Reducing the Families
Grimshaw 2001 against economy constraints
OT is intrinsically an economic system – every process and structure violates some principle
e.g. every structure built on another will have a head and a complement at least – one of these will be leftmost, so the other will violate the leftmost constraint
every movement requires extra structure and extra structures violate leftmost constraints
therefore there is no need for specific economy constraints
Newson 2003 against markedness constraints
constraints typically come in conflicting pairs
X precedes Y – X follows Y
these obviously cannot be satisfied at the same time unless they are vacuously satisfied
unfaithfulness is one way to vacuously satisfy a constraint
i.e. if X is deleted both X prec Y and X foll Y will be satisfied
ranking faithfulness constraints above conflicting position constraints will force the element to be realised, ranking it below will force it to be unrealised.
This is the same as markedness
Alignment Syntax – structure and mapping reduce to alignment
Structure, mapping and alignment constraints are all positional constraints – they place elements in certain positions
Thus there is a redundancy involved here.
Both structure and mapping can be satisfied by specific alignments
ObHd = finite element must immediately follow wh-element
OpSpec = operator precedes every element it has scope over
Alignments cannot be satisfied by structure and mapping without other assumptions being made
that X precedes Y might be able to be enforced by making X be in the specifier and Y be in the head position of some phrase (assuming that SpecFirst dominated HdFirst) but then X must be a phrase and Y must be a head, so this couldn’
therefore it is simpler to get rid of structure and mapping constraints and reduce the redundancy by having alignment constraints
Consequences of reduction to alignments
If structural alignments are allowed, then structures must be part of the candidate set
So GEN must create structure
If non-structural alignments only are allowed, then there cannot be structure in the candidate set – something that would be unconstrained would not be possible as there would be no reason to choose one candidate over a potential infinite number of different candidates
GEN only needs to generate orders over input elements
There are only a finite number of orderings over a finite number of elements and hence the candidate set is finite under this assumption.
GEN is very simple – the only relevant syntactic processes concern ordering and deletion
