Cyclic Evaluation
Rule ordering
Old idea that grammatical rules have to be ordered
Passive
NP1 V NP2 => NP2 was V+ed by NP1
Reflexive
NP V NP => NP V Xself (if NP = NP and both NPs are in the same clause
Pass > Refl
John likes John => John was liked by John => John was liked by himself
Refl > Pass
John likes John => John likes himself => himself was liked by John
conclusion
passive must precede reflexivisation
Cycles
Problem
John believe Bill like Bill
pass > refl
J bel [Bill like Bill] => Bill was belived [to like Bill] by J => Bill was bel [to like him] by J
refl > pass
J bel [B like B] => J bel [B like himself] => B was bel [to like himself] by John
Conclusion
reflexivisation must precede passive!!!
Solution – cyclical application
rules apply in order to most embedded S first then to next S in same order
[S1 J bel [S2 B like B]]
no passive on S2
reflex on S2 = [S1 J bel [S2 B like himself]]
passive on S1 = [S1 B was bel [S2 to like himself] by J]
Alternatively
passive on S2 = [S1 J bel [S2 B to be liked by B]]
refl on S2 = [S1 J bel [S2 B to be liked by himself]]
passive in S1 = [S1 B was bel [to be liked by himself] by J]
Cyclic movement in 70s
The notion of cyclicity came to dominate the theory of bounding – the limitation of distance in movement
In subjacency it is encoded in the notion of a bounding node: nodes identifying the measuring out of distance of a movement
no more than one bounding node can be crossed by any one movement
who do[S you think [t [S he likes t]]]
* who do [S you wonder [why [S he likes t]]]
Cyclicity in Alignment Syntax
... who John likes
sPp, sAp, whPp, whAp
sAp > whAp
no side switching, so
sPp > sAp and whPp > whAp
... who John thinks likes Bill
whPp<int>, whAp<int>
but if sAp > whAp<int> we would expect
... John thinks who likes Bill
if whAp<int> > sPp we would expect
... John who thinks likes Bill
solution:
candidates are evaluated in several cycles, each cycle concentrates on the relationships given with respect to a single predicate
but instead of the traditional ‘bottom’ up cyclicity, the data indicates that the dominating predicates are attended to first
superordinate predicate = predicate which takes another as its argument
subordinate predicate = predicate which is an argument of another
	P1 cycle
	sPp
	sAp
	whPp<int>
	whAp<int>
	oFp

	... S P1<int> Wh P2 Obj
	
	
	*!
	
	

	... S wh P1<int> P2 Obj
	
	*!
	
	
	

	=>... Wh S P1<int> P2 Obj
	
	
	
	*
	

	=> ...Obj Wh S P1<int> P2
	
	
	
	*
	

	P2 cycle
	sPp
	sAp
	whPp<int>
	whAp<int>
	oFp

	=>... Wh S P1<int> P2 Obj
	
	**
	
	
	

	...Obj Wh S P1<int> P2
	
	**
	
	
	*!

Gaspar’s Mop-up cycle
coordination of clauses with gaps follows general word order principles:
John likes – but Mary hates garlic
the object follows both predicates
John likes garlic but – hates pepper
the subject precedes both predicates
Garlic, John likes but – Mary hates
topic object precedes both predicates
languages with different word orders show a similar pattern
SOV =
S O V and S – V
S O V and – O V
VSO
V – O and V S O
V S – and V S O
Gaspar analysed this as follows
cycles of evaluation would order arguments with respect to relevant predicates, but the order of the two clauses is unfixed by these cycles
The last cycle deals with unfulfilled requirements – a predicate which lacks a subject or an object it otherwise requires will attempt to satisfy this requirement with respect to some other subject or object
S V – and S V O
verb with gapped object has an object following it
S V O and S V --
verb with gapped object has no following object
first candidate wins
