Recursion and GP 2.0

Markus A. Pöchtrager markus.poechtrager@univie.ac.at University of Vienna

BRaCeLeT talk series, \#11
Budapest, September 12, 2019
（1）Setting the stage

（2）Non－Arbitrariness

（3）When are trees needed？
（4）Binding in phonology
（5）Foot inside a foot
（6）Limits of recursion
（7）Conclusion

4ロト4氧〉（

Recursion in syntax and phonology?

(1) Central in syntax, helps us to make "infinite use of finite means" (Wilhelm von Humboldt)

Recursion in syntax and phonology?

(1) Central in syntax, helps us to make "infinite use of finite means" (Wilhelm von Humboldt)
(2) Common wisdom in phonology: no recursion

Recursion in syntax and phonology?

(1) Central in syntax, helps us to make "infinite use of finite means" (Wilhelm von Humboldt)
(2) Common wisdom in phonology: no recursion
(3) Jackendoff (2007: 39): "[Phonological] structures, though hierarchical, are not recursive, in that, unlike syntactic structures, they cannot be embedded indefinitely deeply in other structures of the same type. [Footnote not included/MAP.] For example, a rhyme cannot be subordinate to a syllable that is in turn subordinate to another rhyme."

Recursion in syntax and phonology?

(1) Central in syntax, helps us to make "infinite use of finite means" (Wilhelm von Humboldt)
(2) Common wisdom in phonology: no recursion
(3) Jackendoff (2007: 39): "[Phonological] structures, though hierarchical, are not recursive, in that, unlike syntactic structures, they cannot be embedded indefinitely deeply in other structures of the same type. [Footnote not included/MAP.] For example, a rhyme cannot be subordinate to a syllable that is in turn subordinate to another rhyme."
(4) Recursion treated as something beyond hierachy.

Two objections

(1) Recursion vs. self-embedding; equated by Jackendoff.

Two objections

(1) Recursion vs. self-embedding; equated by Jackendoff.
(2) What are the (hidden) assumptions about the workings of phonology? (Incl. what is the inventory of phonological objects.)

Objection 1: Recursion

(1) Recursion: Operation that can apply to its own output.

Objection 1: Recursion

(1) Recursion: Operation that can apply to its own output.
(2) Minimalist syntax (Chomsky 1995): Merge.

Objection 1: Recursion

(1) Recursion: Operation that can apply to its own output.
(2) Minimalist syntax (Chomsky 1995): Merge.
(3) Builds set $\{\alpha, \beta\}$ out of α and β.

Objection 1: Recursion

(1) Recursion: Operation that can apply to its own output.
(2) Minimalist syntax (Chomsky 1995): Merge.
(3) Builds set $\{\alpha, \beta\}$ out of α and β.
(4) Recursive, can reapply to its output, e.g. $\{\gamma,\{\alpha, \beta\}\}$.

Objection 1: Recursion

(1) Recursion: Operation that can apply to its own output.
(2) Minimalist syntax (Chomsky 1995): Merge.
(3) Builds set $\{\alpha, \beta\}$ out of α and β.
(4) Recursive, can reapply to its output, e.g. $\{\gamma,\{\alpha, \beta\}\}$.
(5) Label of output depends on members of the set; subject of discussion (Cecchetto \& Donati 2005)

Objection 1: Recursion

(1) Recursion: Operation that can apply to its own output.
(2) Minimalist syntax (Chomsky 1995): Merge.
(3) Builds set $\{\alpha, \beta\}$ out of α and β.
(4) Recursive, can reapply to its output, e.g. $\{\gamma,\{\alpha, \beta\}\}$.
(5) Label of output depends on members of the set; subject of discussion (Cecchetto \& Donati 2005)
© Merge itself category-neutral.

Objection 1: Recursion

(1) Recursion: Operation that can apply to its own output.
(2) Minimalist syntax (Chomsky 1995): Merge.
(3) Builds set $\{\alpha, \beta\}$ out of α and β.
(4) Recursive, can reapply to its output, e.g. $\{\gamma,\{\alpha, \beta\}\}$.
(5) Label of output depends on members of the set; subject of discussion (Cecchetto \& Donati 2005)
(0) Merge itself category-neutral.
(1) Any phrase within any other phrase example of recursion; hidden by labels.

Objection 1: Recursion

(1) Recursion: Operation that can apply to its own output.
(2) Minimalist syntax (Chomsky 1995): Merge.
(3) Builds set $\{\alpha, \beta\}$ out of α and β.
(4) Recursive, can reapply to its output, e.g. $\{\gamma,\{\alpha, \beta\}\}$.
(5) Label of output depends on members of the set; subject of discussion (Cecchetto \& Donati 2005)
(0) Merge itself category-neutral.
(1) Any phrase within any other phrase example of recursion; hidden by labels.
(8) By separating labels and structure-building, hierarchy and recursion much closer.

Objection 1 (cont'd): Self-embedding

(1) Standard examples of recursion (John said that Mary had that seen that Jack...) really self-embedding.

Objection 1 (cont'd): Self-embedding

(1) Standard examples of recursion (John said that Mary had that seen that Jack...) really self-embedding.
(2) Nevins, Pesetsky \& Rodrigues (2009): Pirahã restricts self-embedding, but not recursion.

Objection 2: Phonological toolbox

(11) Mainstream Prosodic Hierarchy (Nespor \& Vogel 1986) fixed set of phonological constituents; no looping back.

Objection 2: Phonological toolbox

(1) Mainstream Prosodic Hierarchy (Nespor \& Vogel 1986) fixed set of phonological constituents; no looping back.
(2) Would indeed rule out Jackendoff's example.

Objection 2: Phonological toolbox

(11) Mainstream Prosodic Hierarchy (Nespor \& Vogel 1986) fixed set of phonological constituents; no looping back.
(2) Would indeed rule out Jackendoff's example.
(3) Jackendoff presupposes correctness of mainstream assumptions, many of which called into question in Government Phonology (GP) (Kaye, Lowenstamm \& Vergnaud 1985, 1990; Kaye 1990), but also by others (Newell 2017).

Objection 2: Phonological toolbox

(11) Mainstream Prosodic Hierarchy (Nespor \& Vogel 1986) fixed set of phonological constituents; no looping back.
(2) Would indeed rule out Jackendoff's example.
(3) Jackendoff presupposes correctness of mainstream assumptions, many of which called into question in Government Phonology (GP) (Kaye, Lowenstamm \& Vergnaud 1985, 1990; Kaye 1990), but also by others (Newell 2017).
(4) No syllable, no coda (Kaye, Lowenstamm \& Vergnaud 1990; Kaye 1990), no mora (Yoshida 1990, 1996)

Objection 2: Phonological toolbox

(11) Mainstream Prosodic Hierarchy (Nespor \& Vogel 1986) fixed set of phonological constituents; no looping back.
(2) Would indeed rule out Jackendoff's example.
(3) Jackendoff presupposes correctness of mainstream assumptions, many of which called into question in Government Phonology (GP) (Kaye, Lowenstamm \& Vergnaud 1985, 1990; Kaye 1990), but also by others (Newell 2017).
(4) No syllable, no coda (Kaye, Lowenstamm \& Vergnaud 1990; Kaye 1990), no mora (Yoshida 1990, 1996)
(5) Power of Jackendoff's quote rests on the reliability of the notions involved.

How to look at phonology?

(1) Prosodic constituency indeed problematic from a syntactic point of view.

How to look at phonology?

(1) Prosodic constituency indeed problematic from a syntactic point of view.
(2) But there are alternative ways of looking at phonology.

How to look at phonology?

(1) Prosodic constituency indeed problematic from a syntactic point of view.
(2) But there are alternative ways of looking at phonology.
(3) Those alternatives suggested by phonological evidence itself.

How to look at phonology?

(1) Prosodic constituency indeed problematic from a syntactic point of view.
(2) But there are alternative ways of looking at phonology.
(3) Those alternatives suggested by phonological evidence itself.
(4) Alternative suggests commonalities between the two modules; the idea of Structural Analogy (Anderson 1992a).

This talk

(1) Focus on "lower" levels of phonological constituency: prosodic word, foot and levels below.

This talk

(1) Focus on "lower" levels of phonological constituency: prosodic word, foot and levels below.
(2) Not wed to those notions.

This talk

(1) Focus on "lower" levels of phonological constituency: prosodic word, foot and levels below.
(2) Not wed to those notions.
(3) Staying away from higher layers and question to what extent they depend on and are isomorph with syntactic structures (Samuels 2009; Scheer 2008; Truckenbrodt 1995; Wagner 2005)

This talk

(1) Focus on "lower" levels of phonological constituency: prosodic word, foot and levels below.
(2) Not wed to those notions.
(3) Staying away from higher layers and question to what extent they depend on and are isomorph with syntactic structures (Samuels 2009; Scheer 2008; Truckenbrodt 1995; Wagner 2005)
(4) Neeleman \& van de Koot (2006): detailed argument for fundamental differences between syntax and phonology.

This talk

(1) Focus on "lower" levels of phonological constituency: prosodic word, foot and levels below.
(2) Not wed to those notions.
(3) Staying away from higher layers and question to what extent they depend on and are isomorph with syntactic structures (Samuels 2009; Scheer 2008; Truckenbrodt 1995; Wagner 2005)
(4) Neeleman \& van de Koot (2006): detailed argument for fundamental differences between syntax and phonology.
© Singled out because very detailed discussion of what they see as problematic in an attempt to make phonology more syntax-like.

This talk

(1) Focus on "lower" levels of phonological constituency: prosodic word, foot and levels below.
(2) Not wed to those notions.
(3) Staying away from higher layers and question to what extent they depend on and are isomorph with syntactic structures (Samuels 2009; Scheer 2008; Truckenbrodt 1995; Wagner 2005)
(4) Neeleman \& van de Koot (2006): detailed argument for fundamental differences between syntax and phonology.
© Singled out because very detailed discussion of what they see as problematic in an attempt to make phonology more syntax-like.
© Go further than Jackendoff: no role "even" for hierarchy.
(1) Setting the stage
(2) Non-Arbitrariness
(3) When are trees needed?
(4) Binding in phonology
(5) Foot inside a foot
(6) Limits of recursion
(7) Conclusion

In syntax

(1) Minimalist Syntax: what drives a derivation?

In syntax

(1) Minimalist Syntax: what drives a derivation?
(2) Uninterpretable features to be valued/checked: Movement happens for a reason.

In syntax

(1) Minimalist Syntax: what drives a derivation?
(2) Uninterpretable features to be valued/checked: Movement happens for a reason.
(3) Non-arbitrariness established: link between what happens and where/why.

In syntax

(1) Minimalist Syntax: what drives a derivation?
(2) Uninterpretable features to be valued/checked: Movement happens for a reason.
3 Non-arbitrariness established: link between what happens and where/why.
(4) (Uninterpretable features for the sole reason of driving derivations: problematic circularity.)

In phonology

(1) Similar concern in Government Phonology (GP) (Kaye, Lowenstamm \& Vergnaud 1985, 1990; Kaye 1990; Harris 1994).

In phonology

(1) Similar concern in Government Phonology (GP) (Kaye, Lowenstamm \& Vergnaud 1985, 1990; Kaye 1990; Harris 1994).
(2) Non-Arbitrariness Principle (NAP): demands connection between target and trigger.

In phonology

(1) Similar concern in Government Phonology (GP) (Kaye, Lowenstamm \& Vergnaud 1985, 1990; Kaye 1990; Harris 1994).
(2) Non-Arbitrariness Principle (NAP): demands connection between target and trigger.
(3) Not met in $A \rightarrow B / C_{\ldots} D$.

In phonology

(1) Similar concern in Government Phonology (GP) (Kaye, Lowenstamm \& Vergnaud 1985, 1990; Kaye 1990; Harris 1994).
(2) Non-Arbitrariness Principle (NAP): demands connection between target and trigger.
(3) Not met in $A \rightarrow B / C_{\ldots} D$.
(4) Autosegmental Phonology: spreading would guarantee required link: Spreading of a property \mathbf{P} from α to β not only explains why β acquires \mathbf{P}, but also why it acquires it in the context of α.

In phonology

(1) Similar concern in Government Phonology (GP) (Kaye, Lowenstamm \& Vergnaud 1985, 1990; Kaye 1990; Harris 1994).
(2) Non-Arbitrariness Principle (NAP): demands connection between target and trigger.
(3) Not met in $A \rightarrow B / C_{\ldots} D$.
(4) Autosegmental Phonology: spreading would guarantee required link: Spreading of a property \mathbf{P} from α to β not only explains why β acquires \mathbf{P}, but also why it acquires it in the context of α.
(5) Hungarian inessive ház-ban 'in a house ine.', kert-ben 'in a garden ine.'

Why worry about non-arbitrariness?

(1) Not sufficiently clarified in literature on Structural Analogy.

Why worry about non-arbitrariness?

(1) Not sufficiently clarified in literature on Structural Analogy.
(2) Neeleman \& van de Koot (2006): Non-arbitrariness never even mentioned; phonology a collection of arbitrary rules.

Why worry about non-arbitrariness?

(1) Not sufficiently clarified in literature on Structural Analogy.
(2) Neeleman \& van de Koot (2006): Non-arbitrariness never even mentioned; phonology a collection of arbitrary rules.
(3) Flat structure: Prosodic Hierarchy integrated as boundary symbols, which can then figure in rules.

$$
\ldots \text { b } \mu \sigma \mu \text { c } \ldots
$$

Why worry about non-arbitrariness?

(1) Not sufficiently clarified in literature on Structural Analogy.
(2) Neeleman \& van de Koot (2006): Non-arbitrariness never even mentioned; phonology a collection of arbitrary rules.
(3) Flat structure: Prosodic Hierarchy integrated as boundary symbols, which can then figure in rules.

\ldots b $\mu \sigma \mu \mathrm{c} \ldots$
(4) No non-arbitrary link between boundary symbols \& phenomena they cause.

Why worry about non-arbitrariness?

(1) Not sufficiently clarified in literature on Structural Analogy.
(2) Neeleman \& van de Koot (2006): Non-arbitrariness never even mentioned; phonology a collection of arbitrary rules.
(3) Flat structure: Prosodic Hierarchy integrated as boundary symbols, which can then figure in rules.

... b $\mu \sigma \mu \mathrm{c} \ldots$
(4) No non-arbitrary link between boundary symbols \& phenomena they cause.
(3) (Aside: Scheer (2008): Prosodic Hierarchy no better in this regard.)

Why worry about non-arbitrariness?

(1) Not sufficiently clarified in literature on Structural Analogy.
(2) Neeleman \& van de Koot (2006): Non-arbitrariness never even mentioned; phonology a collection of arbitrary rules.
(3) Flat structure: Prosodic Hierarchy integrated as boundary symbols, which can then figure in rules.

\ldots b $\mu \sigma \mu \mathrm{c} \ldots$
(4) No non-arbitrary link between boundary symbols \& phenomena they cause.
(3) (Aside: Scheer (2008): Prosodic Hierarchy no better in this regard.)
© Little worry about hierarchy if phonology arbitrary.

Non-arbitrariness in GP

(1) Not an exercise in self-restriction.

Non-arbitrariness in GP

(1) Not an exercise in self-restriction.
(2) Desire to create a theory rich in empirical content.

Non-arbitrariness in GP

(1) Not an exercise in self-restriction.
(2) Desire to create a theory rich in empirical content.

3 Also a concern in GP 2.0. (Pöchtrager 2006, 2009b, 2010b, 2015a,b, 2016, 2018; Kaye \& Pöchtrager 2013; Živanovič \& Pöchtrager 2010)

Non-arbitrariness in GP

(1) Not an exercise in self-restriction.
(2) Desire to create a theory rich in empirical content.
(3) Also a concern in GP 2.0. (Pöchtrager 2006, 2009b, 2010b, 2015a,b, 2016, 2018; Kaye \& Pöchtrager 2013; Živanovič \& Pöchtrager 2010)
(4) Hierarchical structure plays major role; motivated by phenomena that eschewed a non-arbitrary account.

Non-arbitrariness in GP

(1) Not an exercise in self-restriction.
(2) Desire to create a theory rich in empirical content.
(3) Also a concern in GP 2.0. (Pöchtrager 2006, 2009b, 2010b, 2015a,b, 2016, 2018; Kaye \& Pöchtrager 2013; Živanovič \& Pöchtrager 2010)
(4) Hierarchical structure plays major role; motivated by phenomena that eschewed a non-arbitrary account.
(5) Can only be appreciated if phonology is not simply seen as a system that allows random operations to take place.
(1) Setting the stage
(2) Non-Arbitrariness
(3) When are trees needed?
(4) Binding in phonology
(5) Foot inside a foot
(6) Limits of recursion
(7) Conclusion

Trees in phonology not new.

(1) García-Bellido (2005) "the simplest possible hypothesis to approach variation [is that] an organism might use the same operative mechanisms, at different levels of organization [...], unless it is proved that it does not."

Trees in phonology not new.

(1) García-Bellido (2005) "the simplest possible hypothesis to approach variation [is that] an organism might use the same operative mechanisms, at different levels of organization [...], unless it is proved that it does not."
(2) Ubiquity of hierarchy elsewhere in grammar: null-hypothesis that phonology is the same.

Trees in phonology not new.

(1) García-Bellido (2005) "the simplest possible hypothesis to approach variation [is that] an organism might use the same operative mechanisms, at different levels of organization [...], unless it is proved that it does not."
(2) Ubiquity of hierarchy elsewhere in grammar: null-hypothesis that phonology is the same.
(3) Same line of reasoning in Hulst $(2006,2010 \mathrm{~b}, \mathrm{a})$.

Trees in phonology not new.

(1) García-Bellido (2005) "the simplest possible hypothesis to approach variation [is that] an organism might use the same operative mechanisms, at different levels of organization [...], unless it is proved that it does not."
(2) Ubiquity of hierarchy elsewhere in grammar: null-hypothesis that phonology is the same.
(3) Same line of reasoning in Hulst $(2006,2010 b, a)$.
(4) Hierarchical structure attested in other particulate systems outside of linguistics as well.

but too powerful?

(1) Neeleman \& van de Koot (2006): hierarchical structure powerful.

but too powerful?

(1) Neeleman \& van de Koot (2006): hierarchical structure powerful.
(2) Can be used \nrightarrow must be used.

but too powerful?

(1) Neeleman \& van de Koot (2006): hierarchical structure powerful.
(2) Can be used \nrightarrow must be used.
(3) What phenomena can only be explained by trees, instead of just also be explained.

but too powerful?

(1) Neeleman \& van de Koot (2006): hierarchical structure powerful.
(2) Can be used \nrightarrow must be used.
(3) What phenomena can only be explained by trees, instead of just also be explained.
(4) Syntax: trees for the expression of asymmetries, which could not be handled by flat structures (pace Barker 2012)

but too powerful?

(1) Neeleman \& van de Koot (2006): hierarchical structure powerful.
(2) Can be used \nrightarrow must be used.
(3) What phenomena can only be explained by trees, instead of just also be explained.
(4) Syntax: trees for the expression of asymmetries, which could not be handled by flat structures (pace Barker 2012)
© Binding phenomena, structural ambiguities (blue striped suit) etc. (Everaert, Huybregts, Chomsky, Berwick \& Bolhuis 2015) - hierarchical structure essential.

but too powerful?

(1) Neeleman \& van de Koot (2006): hierarchical structure powerful.
(2) Can be used \nrightarrow must be used.
(3) What phenomena can only be explained by trees, instead of just also be explained.
(4) Syntax: trees for the expression of asymmetries, which could not be handled by flat structures (pace Barker 2012)
© Binding phenomena, structural ambiguities (blue striped suit) etc. (Everaert, Huybregts, Chomsky, Berwick \& Bolhuis 2015) - hierarchical structure essential.
© Recursion leads us to expect that same/similar asymmetries repeat themselves at various levels.

Structural ambiguities in phonology?

(11) Unclear, often allow for different interpretations.

Structural ambiguities in phonology?

(1) Unclear, often allow for different interpretations.
(2) French [wa] (Kaye 1989)
(1) $\mathrm{O}+\mathrm{N}$: la huaille 'the mob'
(2) Complex N without/with empty O : l'oiseau 'the bird'

Structural ambiguities in phonology?

(1) Unclear, often allow for different interpretations.
(2) French [wa] (Kaye 1989)
(1) $\mathrm{O}+\mathrm{N}$: la huaille 'the mob'
(2) Complex N without/with empty O : l'oiseau 'the bird'
(3) (Linear) GP 1.x analysis without recourse to hierarchy:

Structural ambiguities in phonology?

(1) Unclear, often allow for different interpretations.
(2) French [wa] (Kaye 1989)
(1) $\mathrm{O}+\mathrm{N}$: la huaille 'the mob'
(2) Complex N without/with empty O : l'oiseau 'the bird'
(3) (Linear) GP 1.x analysis without recourse to hierarchy:

(4) English [pt]
(1) "Coda" $+\mathrm{O}:$ kept, apt
(2) $\mathrm{O}+\mathrm{N}+\mathrm{O}$ (N empty): peeped

Structural ambiguities in phonology?

(1) Unclear, often allow for different interpretations.
(2) French [wa] (Kaye 1989)
(1) $\mathrm{O}+\mathrm{N}:$ la huaille 'the mob'
(2) Complex N without/with empty O : l'oiseau 'the bird'
(3) (Linear) GP 1.x analysis without recourse to hierarchy:

(4) English [pt]
(1) "Coda" + O: kept, apt
(2) $\mathrm{O}+\mathrm{N}+\mathrm{O}$ (N empty): peeped
© Arguably different (Kaye 1995), yet no evidence for hierarchy.

(1) Setting the stage

(2) Non-Arbitrariness
(3) When are trees needed?
(4) Binding in phonology
(5) Foot inside a foot
(6) Limits of recursion
(7) Conclusion

Binding in phonology

(1) Binding theory: attempt to understand behaviour/distribution of the elements I (roughly: palatality) and \mathbf{U} (roughly: labiality).

Binding in phonology

(1) Binding theory: attempt to understand behaviour/distribution of the elements I (roughly: palatality) and \mathbf{U} (roughly: labiality).
(2) English, Putonghua, Japanese etc. suggest \mathbf{I} / \mathbf{U} distributed in asymmetric fashion (Pöchtrager 2009a; Živanovič \& Pöchtrager 2010; Pöchtrager 2015b)

Binding in phonology

(1) Binding theory: attempt to understand behaviour/distribution of the elements I (roughly: palatality) and \mathbf{U} (roughly: labiality).
(2) English, Putonghua, Japanese etc. suggest \mathbf{I} / \mathbf{U} distributed in asymmetric fashion (Pöchtrager 2009a; Živanovič \& Pöchtrager 2010; Pöchtrager 2015b)
(3) Relies on notions like c-command, only expressible in hierarchical terms; flat/linear structures insufficient.

Binding in phonology

(1) Binding theory: attempt to understand behaviour/distribution of the elements I (roughly: palatality) and \mathbf{U} (roughly: labiality).
(2) English, Putonghua, Japanese etc. suggest \mathbf{I} / \mathbf{U} distributed in asymmetric fashion (Pöchtrager 2009a; Živanovič \& Pöchtrager 2010; Pöchtrager 2015b)
(3) Relies on notions like c-command, only expressible in hierarchical terms; flat/linear structures insufficient.
(4) Counter Neeleman \& van de Koot (2006), who explicitly deny existence of asymmetries in phonology, but in line with Hulst (2006).

Binding in phonology

(1) Binding theory: attempt to understand behaviour/distribution of the elements I (roughly: palatality) and \mathbf{U} (roughly: labiality).
(2) English, Putonghua, Japanese etc. suggest \mathbf{I} / \mathbf{U} distributed in asymmetric fashion (Pöchtrager 2009a; Živanovič \& Pöchtrager 2010; Pöchtrager 2015b)
(3) Relies on notions like c-command, only expressible in hierarchical terms; flat/linear structures insufficient.
(4) Counter Neeleman \& van de Koot (2006), who explicitly deny existence of asymmetries in phonology, but in line with Hulst (2006).
(5) Tree structures not simply convenient but also necessary.

English diphthongs in GP 1.x

ai	$\{\mathbf{A}\}$	$\{\mathbf{I}\}$	ei	$\{\mathbf{A}, \mathbf{I}\}$	$\{\mathbf{I}\}$
au	$\{\mathbf{A}\}$	$\{\mathbf{U}\}$	ou	$\{\mathbf{A}, \mathbf{U}\}$	$\{\mathbf{U}\}$
oi	$\{\mathbf{A}, \mathbf{U}\}$	$\{\mathbf{I}\}$			

Complexity condition (CC) (Harris 1990: 274):
(1) "Let α and β be segments occupying the positions A and B respectively. Then, if A governs B, β must not be more complex than α."

English diphthongs in GP 1.x

ai	$\{\mathbf{A}\}$	$\{\mathbf{I}\}$	ei	$\{\mathbf{A}, \mathbf{I}\}$	$\{\mathbf{I}\}$
au	$\{\mathbf{A}\}$	$\{\mathbf{U}\}$	ou	$\{\mathbf{A}, \mathbf{U}\}$	$\{\mathbf{U}\}$
oi	$\{\mathbf{A}, \mathbf{U}\}$	$\{\mathbf{I}\}$			

Complexity condition (CC) (Harris 1990: 274):
(1) "Let α and β be segments occupying the positions A and B respectively. Then, if A governs B, β must not be more complex than α."
(2) "The complexity value of a segment is simply calculated by determining the number of elements of which it is composed."

English diphthongs in GP 1.x

ai	$\{\mathbf{A}\}$	$\{\mathbf{I}\}$	ei	$\{\mathbf{A}, \mathbf{I}\}$	$\{\mathbf{I}\}$
$a u$	$\{\mathbf{A}\}$	$\{\mathbf{U}\}$	ou	$\{\mathbf{A}, \mathbf{U}\}$	$\{\mathbf{U}\}$
oi	$\{\mathbf{A}, \mathbf{U}\}$	$\{\mathbf{I}\}$			

Complexity condition (CC) (Harris 1990: 274):
(1) "Let α and β be segments occupying the positions A and B respectively. Then, if A governs B, β must not be more complex than α."
(2) "The complexity value of a segment is simply calculated by determining the number of elements of which it is composed."
(3) Branching onset br

0

Diphthong oi

Complexity insufficient

(1) Problems both in branching onsets and in branching nuclei:
Diphthong ai
Diphthong *ia
Diphthong *eu
N

Complexity insufficient

(1) Problems both in branching onsets and in branching nuclei:

(2) Both problems stem from a failure to take into account the individual nature of elements:

- Equal complexity should allow for mirror images, counter to fact.
- Complexity differential no guarantee for well-formedness.

Conditions on A

(1) A-requirement (P1): Head must contain A, complement must not contain A.

Conditions on A

(1) A-requirement (P1): Head must contain A, complement must not contain \mathbf{A}.
(2) Auxiliary assumption \#1 (Aux1): English nuclei never combine I and U (true of monophthongs and members of a diphthong).

Conditions on A

(1) A-requirement (P1): Head must contain A, complement must not contain A.
(2) Auxiliary assumption \#1 (Aux1): English nuclei never combine I and \mathbf{U} (true of monophthongs and members of a diphthong).
(3) Auxiliary assumption \#2 (Aux2): No empty expressions in diphthongs. (For head, this follows from P1.)

Logical combinations left

Assuming P1, Aux1, Aux2:

	second member							
first member	$\}$	$\{\mathbf{A}\}$	$\{\mathbf{I}\}$	$\{\mathbf{U}\}$	$\{\mathbf{A}, \mathbf{I}\}$	$\{\mathbf{A}, \mathbf{U}\}$	$\{\mathbf{I}, \mathbf{U}\}$	$\{\mathbf{A}, \mathbf{I}, \mathbf{U}\}$
$\}$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$
$\{\mathbf{A}\}$	$*$	$*$	\checkmark	\checkmark	$*$	$*$	$*$	$*$
$\{\mathbf{I}\}$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$
$\{\mathbf{U}\}$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$
$\{\mathbf{A}, \mathbf{I}\}$	$*$	$*$	\checkmark	\checkmark	$*$	$*$	$*$	$*$
$\{\mathbf{A}, \mathbf{U}\}$	$*$	$*$	\checkmark	\checkmark	$*$	$*$	$*$	$*$
$\{\mathbf{I}, \mathbf{U}\}$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$
$\{\mathbf{A}, \mathbf{I}, \mathbf{U}\}$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$

Still 6 combinations remaining, $3+1+2$

a.		b.			
	$\{\mathbf{A}\}$	$\{\mathbf{I}\}$	ei	$\{\mathbf{A}, \mathbf{I}\}$	$\{\mathbf{I}\}$
$a u$	$\{\mathbf{A}\}$	$\{\mathbf{U}\}$	ou	$\{\mathbf{A}, \mathbf{U}\}$	$\{\mathbf{U}\}$
$o i$	$\{\mathbf{A}, \mathbf{U}\}$	$\{\mathbf{I}\}$			
${ }^{*} e u$	$\{\mathbf{A}, \mathbf{I}\}$	$\{\mathbf{U}\}$			

Take stock

(1) What is so special about \mathbf{A} that there are conditions on it?

Take stock

(1) What is so special about \mathbf{A} that there are conditions on it?
(2) What about the asymmetry between I and U?

A as structural (1)

(1) A \sim [non-high] as well as [coronal] (Broadbent 1991; Cyran 1997)

A as structural (1)

(1) A ~ [non-high] as well as [coronal] (Broadbent 1991; Cyran 1997)
(2) A behaves differently from other elements.

A as structural (1)

(1) A ~ [non-high] as well as [coronal] (Broadbent 1991; Cyran 1997)
(2) A behaves differently from other elements.
(3) Also noted in Dependency Phonology \& Particle Phonology (Anderson \& Ewen 1987; Cobb 1995, 1997; Kaye 2000; Pöchtrager 2006, 2012; Schane 1984).

A as structural (1)

(1) A ~ [non-high] as well as [coronal] (Broadbent 1991; Cyran 1997)
(2) A behaves differently from other elements.
(3) Also noted in Dependency Phonology \& Particle Phonology (Anderson \& Ewen 1987; Cobb 1995, 1997; Kaye 2000; Pöchtrager 2006, 2012; Schane 1984).
(4) "Differently": A seems to interact with (constituent) structure unlike other elements.

A as structural (2)

(1) Motivated by many cases where \mathbf{A} seems to provide extra room:

A as structural (2)

(1) Motivated by many cases where \mathbf{A} seems to provide extra room:
(2) English size restrictions:

- Either: $\overline{\mathrm{V}} / \mathrm{VV}+\mathrm{C}$ (meet, boot, boat).

A as structural (2)

(1) Motivated by many cases where \mathbf{A} seems to provide extra room:
(2) English size restrictions:

- Either: $\overline{\mathrm{V}} / \mathrm{VV}+\mathrm{C}$ (meet, boot, boat).
- Or: $\breve{V}+\mathrm{CC}($ mint, lift, pact).

A as structural (2)

(1) Motivated by many cases where \mathbf{A} seems to provide extra room:
(2) English size restrictions:

- Either: $\overline{\mathrm{V}} / \mathrm{VV}+\mathrm{C}$ (meet, boot, boat).
- Or: $\breve{V}+\mathrm{CC}($ mint, lift, pact).
(3) But:

A as structural (2)

(1) Motivated by many cases where \mathbf{A} seems to provide extra room:
(2) English size restrictions:

- Either: $\overline{\mathrm{V}} / \mathrm{VV}+\mathrm{C}$ (meet, boot, boat).
- Or: $\breve{V}+\mathrm{CC}($ mint, lift, pact).
(3) But:
- English: V̄CC if both C's contains \mathbf{A} (= coronal): fiend but not * fiemp nor *fienk, count but not *coump nor *counk.

A as structural (2)

(1) Motivated by many cases where \mathbf{A} seems to provide extra room:
(2) English size restrictions:

- Either: $\overline{\mathrm{V}} / \mathrm{VV}+\mathrm{C}$ (meet, boot, boat).
- Or: $\breve{V}+\mathrm{CC}($ mint, lift, pact).
(3) But:
- English: V̄CC if both C's contains \mathbf{A} (= coronal): fiend but not * fiemp nor *fienk, count but not * coump nor * counk.
- Also with s+C: east, boost, haste, boast - *easp, *boosk, *haspe, *boask.

A as structural (2)

(1) Motivated by many cases where \mathbf{A} seems to provide extra room:
(2) English size restrictions:

- Either: $\overline{\mathrm{V}} / \mathrm{VV}+\mathrm{C}$ (meet, boot, boat).
- Or: $\quad \breve{V}+\mathrm{CC}($ mint, lift, pact).
(3) But:
- English: V̄CC if both C's contains \mathbf{A} (= coronal): fiend but not * fiemp nor *fienk, count but not * coump nor * counk.
- Also with s+C: east, boost, haste, boast - *easp, *boosk, *haspe, *boask.
- S. Br. English: clasp, task, draft - *cleesp, *toosk, *dreeft. Nuclei containing A by itself can appear before s+C even when one of the final consonants does not contain \mathbf{A}.

A as structural (2)

(1) Motivated by many cases where \mathbf{A} seems to provide extra room:
(2) English size restrictions:

- Either: $\bar{V} / \mathrm{VV}+\mathrm{C}$ (meet, boot, boat).
- Or: $\quad \breve{V}+$ CC (mint, lift, pact).
(3) But:
- English: V̄CC if both C's contains \mathbf{A} (= coronal): fiend but not * fiemp nor *fienk, count but not *coump nor * counk.
- Also with s+C: east, boost, haste, boast - *easp, *boosk, *haspe, *boask.
- S. Br. English: clasp, task, draft - *cleesp, *toosk, *dreeft. Nuclei containing A by itself can appear before s+C even when one of the final consonants does not contain \mathbf{A}.
- Vowel makes up for "insufficiency" of cluster; but there have to be two A's around.

A as structural (3)

(1) Recurrent across languages (Pöchtrager 2012).

A as structural (3)

(1) Recurrent across languages (Pöchtrager 2012).
(2) Finnish aalto 'wave', *aalpo, *aalko.

A as structural (3)

(1) Recurrent across languages (Pöchtrager 2012).
(2) Finnish aalto 'wave', *aalpo, *aalko.
(3) "If it interacts with structure, make it structure" (cf. fate of [long]).

A as structural (3)

(1) Recurrent across languages (Pöchtrager 2012).
(2) Finnish aalto 'wave', *aalpo, *aalko.
(3) "If it interacts with structure, make it structure" (cf. fate of [long]).
(4) Proposal: Expressions that were thought to contain \mathbf{A} are structurally bigger than those without (Pöchtrager 2006, 2010b, 2012, 2018; Kaye \& Pöchtrager 2009, 2013).

A as structural (3)

(1) Recurrent across languages (Pöchtrager 2012).
(2) Finnish aalto 'wave', *aalpo, *aalko.
(3) "If it interacts with structure, make it structure" (cf. fate of [long]).
(4) Proposal: Expressions that were thought to contain \mathbf{A} are structurally bigger than those without (Pöchtrager 2006, 2010b, 2012, 2018; Kaye \& Pöchtrager 2009, 2013).
(5) In fact, what should replace \mathbf{A}-ness is empty structure.

Two x-bar structures on top of each other

(1) Vowel contains head (xN) that can project up to two times in accordance with x-bar theory.

Two x-bar structures on top of each other

(1) Vowel contains head (xN) that can project up to two times in accordance with x -bar theory.

(2) Can be embedded by another head (xn), which in turn can project up to twice. Maximal structure:

Doubled vowel structure also in den Dikken \& van der Hulst (2018).

Meaning of xn, xN : still somewhat unclear.

English vowels

(1) [1]/[i]

[æ]/[̈̈]

I

English vowels

(1) [1]/[i]

I
(2) Melody associated to lower head, whose complement (orange) is responsible for the tense/lax distinction.

English vowels

(1) [1]/[i]

(2) Melody associated to lower head, whose complement (orange) is responsible for the tense/lax distinction.
(3) Melody in non-heads: offglides (an later: onglides) in diphthongs.

English vowels

(1) [1]/[i]

I
(2) Melody associated to lower head, whose complement (orange) is responsible for the tense/lax distinction.
(3) Melody in non-heads: offglides (an later: onglides) in diphthongs.
(4) Number of empty positions measure of openness.

Binding

(1) Asymmetry эI/* ${ }^{\text {qu: }}$

ρ	I
"A"	
\mathbf{U}	\mathbf{I}

" \mathbf{A} " = structure to replace \mathbf{A}

Binding

(1) Asymmetry эı/*عv:

ρ	I
"A"	
\mathbf{U}	\mathbf{I}

" \mathbf{A} " = structure to replace \mathbf{A}
(2) Similarity to binding in syntax:
a. John saw Mary.
b. Mary saw John.
c. He saw himself.
d. *Himself saw he.

Binding

(1) Asymmetry эı/*عv:

ρ	I
"A"	
\mathbf{U}	\mathbf{I}

* | ε | v |
| :---: | :---: |
| $" \mathbf{A}^{\prime \prime}$ | |
| \mathbf{I} | \mathbf{U} |

" \mathbf{A} " = structure to replace \mathbf{A}
(2) Similarity to binding in syntax:
a. John saw Mary.
c. He saw himself.
b. Mary saw John.
d. *Himself saw he.
(3) Binding (P2): \mathbf{I} can bind \mathbf{U}, but \mathbf{U} must not bind \mathbf{I}.

Binding formalised

Binding (P2): I can bind \mathbf{U}, but \mathbf{U} must not bind \mathbf{I}.

(1) Elements bind each other (within a certain domain), restricts their cooccurrence.

Binding formalised

Binding (P2): I can bind \mathbf{U}, but \mathbf{U} must not bind \mathbf{I}.

(1) Elements bind each other (within a certain domain), restricts their cooccurrence.
(2) α binds β iff α c-commands β.

Binding formalised

Binding (P2): I can bind \mathbf{U}, but \mathbf{U} must not bind \mathbf{I}.
(1) Elements bind each other (within a certain domain), restricts their cooccurrence.
(2) α binds β iff α c-commands β.
(3) (Simplified version of phonological binding, cf. Živanovič \& Pöchtrager (2010) where binding is broken down into smaller parts.)

Binding formalised

Binding (P2): I can bind \mathbf{U}, but \mathbf{U} must not bind \mathbf{I}.
(1) Elements bind each other (within a certain domain), restricts their cooccurrence.
(2) α binds β iff α c-commands β.
(3) (Simplified version of phonological binding, cf. Živanovič \& Pöchtrager (2010) where binding is broken down into smaller parts.)
(4) Compare the or in void to *とv.

Structural asymmetry

(1) C-command requires structural asymmetry: If \mathbf{I} and \mathbf{U} were sisters, they would c-command each other; both oı and εv out.

Structural asymmetry

(1) C-command requires structural asymmetry: If \mathbf{I} and \mathbf{U} were sisters, they would c-command each other; both эr and εv out.
(2) Why is melody in the lower head? Melody in the upper head relevant for ATR-distinction.

Structure of diphthongs

(1) Two empty positions in each (yellow); head of diphthong thus mid.

Structure of diphthongs

(1) Two empty positions in each (yellow); head of diphthong thus mid.
(2) Diphthong has its weaker (glide) part integrated into the main part. Main part needs a certain size for that embedding to take place.

Structure of diphthongs

(1) Two empty positions in each (yellow); head of diphthong thus mid.
(2) Diphthong has its weaker (glide) part integrated into the main part. Main part needs a certain size for that embedding to take place.
(3) Conversely, for offglide only one position.

Structure of diphthongs

(1) Two empty positions in each (yellow); head of diphthong thus mid.
(2) Diphthong has its weaker (glide) part integrated into the main part. Main part needs a certain size for that embedding to take place.
(3) Conversely, for offglide only one position.
(4) Adequate reinterpretation of " \mathbf{A} in head, no \mathbf{A} in complement".

Urgent questions

(1) What's the independent support?

Urgent questions

(1) What's the independent support?

- Binding models English, but do we find those restrictions elsewhere?

Urgent questions

(1) What's the independent support?

- Binding models English, but do we find those restrictions elsewhere?
- Evidence for structural asymmetry independent of replacement for A?

Urgent questions

(1) What's the independent support?

- Binding models English, but do we find those restrictions elsewhere?
- Evidence for structural asymmetry independent of replacement for A?
(2) Why not simply expressed in linear terms?

Urgent questions

(1) What's the independent support?

- Binding models English, but do we find those restrictions elsewhere?
- Evidence for structural asymmetry independent of replacement for A?
(2) Why not simply expressed in linear terms?
- Can we say "I cannot precede U"?

Urgent questions

(1) What's the independent support?

- Binding models English, but do we find those restrictions elsewhere?
- Evidence for structural asymmetry independent of replacement for A?
(2) Why not simply expressed in linear terms?
- Can we say "I cannot precede U"?
- Putonghua has reverse linear order.

Urgent questions

(1) What's the independent support?

- Binding models English, but do we find those restrictions elsewhere?
- Evidence for structural asymmetry independent of replacement for A?
(2) Why not simply expressed in linear terms?
- Can we say "I cannot precede U"?
- Putonghua has reverse linear order.
- Could thus not be handled by linear approach.

Urgent questions

(1) What's the independent support?

- Binding models English, but do we find those restrictions elsewhere?
- Evidence for structural asymmetry independent of replacement for A?
(2) Why not simply expressed in linear terms?
- Can we say "I cannot precede U"?
- Putonghua has reverse linear order.
- Could thus not be handled by linear approach.
- Crucially, hierarchical approach required.

Urgent questions

(1) What's the independent support?

- Binding models English, but do we find those restrictions elsewhere?
- Evidence for structural asymmetry independent of replacement for A?
(2) Why not simply expressed in linear terms?
- Can we say "I cannot precede U"?
- Putonghua has reverse linear order.
- Could thus not be handled by linear approach.
- Crucially, hierarchical approach required.
(3) The claim: C-command, relying on hierarchy, correct way to capture cross-linguistic parallels.

Urgent questions

(1) What's the independent support?

- Binding models English, but do we find those restrictions elsewhere?
- Evidence for structural asymmetry independent of replacement for A?
(2) Why not simply expressed in linear terms?
- Can we say "I cannot precede U"?
- Putonghua has reverse linear order.
- Could thus not be handled by linear approach.
- Crucially, hierarchical approach required.

3 The claim: C-command, relying on hierarchy, correct way to capture cross-linguistic parallels.
(4) Furthermore: same asymmetries come back at different levels.

Putonghua rhymes

(1) 6 relevant cases: (Živanovič \& Pöchtrager 2010; Pöchtrager 2015b)

Putonghua rhymes

(11) 6 relevant cases: (Živanovič \& Pöchtrager 2010; Pöchtrager 2015b)
a.

onglide	head	offglide
i	e	
	"mid"	
\mathbf{I}	\rightarrow	

onglide	head	offglide
u	o	
	"mid"	
\mathbf{U}	\rightarrow	

b.

onglide	head	offglide
$\underset{\sim}{\mathrm{i}}$	o	u
	"mid"	
\mathbf{I}	\leftarrow	\mathbf{U}

onglide	head	offglide
i	a	u
	"low"	
\mathbf{I}		\mathbf{U}

* | onglide | head | offglide |
| :---: | :---: | :---: |
| u | a | $\underset{\sim}{\text { i }}$ |
| | "low" | |
| \mathbf{U} | | \mathbf{I} |

A2

Putonghua rhymes

(1) 6 relevant cases: (Živanovič \& Pöchtrager 2010; Pöchtrager 2015b)
a.

onglide	head	offglide
i	e	
	"mid"	
\mathbf{I}	\rightarrow	

b.

onglide	head	offglide
i	o	u
	"mid"	
\mathbf{I}	\leftarrow	\mathbf{U}

onglide	head	offglide
u	e	$\underset{\sim}{\text { i }}$
	"mid"	
\mathbf{U}	\leftarrow	\mathbf{I}

onglide	head	offglide
i	a	u
	"low"	
\mathbf{I}		\mathbf{U}

* $\left.\begin{array}{|c|c|c|}\hline \text { onglide } & \text { head } & \text { offglide } \\ \underset{\sim}{u} & \mathrm{a} & \underset{\sim}{i} \\ \hline & \text { "low" } & \\ \hline \mathbf{U} & & \mathrm{I} \\ \hline\end{array}\right\} \mathbf{A} 2$
(2) Observations:
- Head must have a certain minimal size; cf. English.
- Asymmetry with respect to sharing (asymmetry A1)
- Asymmetry with respect to \mathbf{I} / \mathbf{U}; iau/*uai (asymmetry A2)

Putonghua rhymes

(1) 6 relevant cases: (Živanovič \& Pöchtrager 2010; Pöchtrager 2015b)
a.

onglide	head	offglide
i	e	
	"mid"	
\mathbf{I}	\rightarrow	

b.

onglide	head	offglide
i	o	u
	"mid"	
\mathbf{I}	\leftarrow	\mathbf{U}

onglide	head	offglide
i	a	u
	"low"	
\mathbf{I}		\mathbf{U}

onglide u	head o "mid"	offglide
	\rightarrow	
\mathbf{U}	\rightarrow	

onglide	head	offglide
$\underset{\sim}{u}$	e	$\underset{\sim}{\text { i }}$
	"mid"	
\mathbf{U}	\leftarrow	\mathbf{I}

C.
$\left.\begin{array}{|c|c|c|}\hline \text { onglide } & \text { head } & \text { offglide } \\ \text { u } & \mathrm{a} & \stackrel{i}{c} \\ \hline & \text { "low" } & \\ \hline \mathbf{U} & & \mathbf{I} \\ \hline\end{array}\right\} \mathbf{A} 2$
(2) Observations:

- Head must have a certain minimal size; cf. English.
- Asymmetry with respect to sharing (asymmetry A1)
- Asymmetry with respect to \mathbf{I} / \mathbf{U}; iau/*uai (asymmetry A2)
(3) (Note: there is the sequence uai, but with different constituent structure.)

First asymmetry (A1)

First asymmetry (A1)

(1)

onglide	head	offglide
$\underset{\sim}{\mathrm{i}}$	e	
	"mid"	
I	\rightarrow	

b.

onglide	head	offglide
i	o	u
	"mid"	
\mathbf{I}	\leftarrow	\mathbf{U}

onglide u	head	offglide		
	o "mid"			
\mathbf{U}	\rightarrow			
$\left.\begin{array}{\|c\|c\|c\|}\hline \text { onglide } \\ \text { u } & \text { head } & \text { offglide } \\ \hline & \mathrm{e} & \text { i } \\ \hline \mathbf{U} & \text { "mid" } & \\ \hline\end{array}\right\}$ A1			\quad	I
:---				

(2) Sharing the melody: Right (offglide) takes precedence over left (onglide).

Flat vs. hierarchical

(11) Linear expression not very insightful: why that asymmetry?

Flat vs. hierarchical

(1) Linear expression not very insightful: why that asymmetry?
(2) Reminiscent of syntactic "closeness":

(lit. "come me on-behalf-of"), pronoun gets case from postposition.

Flat vs. hierarchical

(1) Linear expression not very insightful: why that asymmetry?
(2) Reminiscent of syntactic "closeness":

(lit. "come me on-behalf-of"), pronoun gets case from postposition.
(3) Linearly, mir is equidistant to verb and postposition, hierarchically (definable in terms of c-command) closer to postposition.

Flat vs. hierarchical

(1) Linear expression not very insightful: why that asymmetry?
(2) Reminiscent of syntactic "closeness":

(lit. "come me on-behalf-of"), pronoun gets case from postposition.
(3) Linearly, mir is equidistant to verb and postposition, hierarchically (definable in terms of c -command) closer to postposition.
(4) Right precedence over left follows from hierarchy.

General structure of the nucleus

(1) Tree structure captures asymmetry/closeness (c-command).

General structure of the nucleus

(1) Tree structure captures asymmetry/closeness (c-command).
(2) Orange part needed to embed offglide and to express mid/low distinction for head.

General structure of the nucleus

(1) Tree structure captures asymmetry/closeness (c-command).
(2) Orange part needed to embed offglide and to express mid/low distinction for head.
3 Different position of specifiers still somewhat puzzling.

General structure of the nucleus

(1) Tree structure captures asymmetry/closeness (c-command).
(2) Orange part needed to embed offglide and to express mid/low distinction for head.
3 Different position of specifiers still somewhat puzzling.
(4) Same structure required by A 1 will also explain A2.

iou and *ieu

Onglide and offglide:

iou and *ieu

Onglide and offglide:

(1) \mathbf{U} closer to $\times \mathrm{N}$ than \mathbf{I} is, hence \mathbf{U} melodically commands ("spreads into") it.

iou and *ieu

Onglide and offglide:

(1) \mathbf{U} closer to $\times N$ than \mathbf{I} is, hence \mathbf{U} melodically commands ("spreads into") it.
(2) \mathbf{U} thus interpreted as part of the mid vowel represented by the core, i.e. o.

iou and *ieu

Onglide and offglide:

(1) \mathbf{U} closer to $\times \mathrm{N}$ than \mathbf{I} is, hence \mathbf{U} melodically commands ("spreads into") it.
(2) \mathbf{U} thus interpreted as part of the mid vowel represented by the core, i.e. o.
(3) $*_{\text {ieu }}$ impossible because a closer melodic commander (\mathbf{U}) is skipped. Implies a notion of minimality.

uei and *uoi

uei and *uoi

(1) This time, \mathbf{I} is closer.

uei and *uoi

(1) This time, \mathbf{I} is closer.
(2) *uoi is out for the same reason as *ieu was.

ie and uno

ie and uo

(1) Onglide but no offglide, onglide can colour head.

iau, *uai, and the second asymmetry (A2)

iau, *uai, and the second asymmetry (A2)

(1) A1 required the offglide closer to the core than the onglide. Crucially, the same asymmetric structure, together with binding (P2), can explain the second asymmetry, A2, as well.

iau, *unai, and the second asymmetry (A2)

(1) A1 required the offglide closer to the core than the onglide. Crucially, the same asymmetric structure, together with binding (P2), can explain the second asymmetry, A2, as well.
(2) Again, I can bind \mathbf{U}, but \mathbf{U} must not bind \mathbf{I}; just like in English.

iau, *uai, and the second asymmetry (A2)

(1) A1 required the offglide closer to the core than the onglide. Crucially, the same asymmetric structure, together with binding (P2), can explain the second asymmetry, A2, as well.
(2) Again, I can bind \mathbf{U}, but \mathbf{U} must not bind \mathbf{I}; just like in English.
(3) Offglide does not make it into $\times \mathrm{N}$, due to distance? Gives a in core.

uei and *uai

uei and *uai

(1) Both A 1 and A 2 follow from the proposed structure.

uei and *uai

(1) Both A 1 and A 2 follow from the proposed structure.
(2) In both cases \mathbf{U} c-commands \mathbf{I}.

uei and *uai

(1) Both A 1 and A 2 follow from the proposed structure.
(2) In both cases \mathbf{U} c-commands I.
(3) If \mathbf{U} must not bind \mathbf{I}, then how could uei ever be possible?

uei and *uai

(1) Both A 1 and A 2 follow from the proposed structure.
(2) In both cases \mathbf{U} c-commands \mathbf{I}.
(3) If \mathbf{U} must not bind \mathbf{I}, then how could uei ever be possible?
(4) In uei the I melodically commands ("spreads into") another point and that seems to "immunise" I against binding (creates an island).

I/U asymmetries widespread

(1) $\mathbf{I} \mathbf{U}$ asymmetries can be found in pretty much any language.

I/U asymmetries widespread

(1) $\mathbf{I} \mathbf{U}$ asymmetries can be found in pretty much any language.
(2) Should allow us to submit the theory of binding to a large-scale scrutiny.

Japanese glide+vowel sequences

(1) Another example: Japanese glide+vowel sequences.

Japanese glide+vowel sequences

(1) Another example: Japanese glide+vowel sequences.
(2) Yoshida (1996: 28): severe restrictions on sequences of glide plus vowel.

Japanese glide+vowel sequences

(1) Another example: Japanese glide+vowel sequences.
(2) Yoshida (1996: 28): severe restrictions on sequences of glide plus vowel.

3

Binding gets Japanese for free

(1) All we need to assume is:

Binding gets Japanese for free

(1) All we need to assume is:
i. No self-binding (element cannot bind an instance of itself), also true for Putonghua. (Blue)
ii. U cannot bind I just like in English, Putonghua etc. (Red)

Binding gets Japanese for free

(1) All we need to assume is:
i. No self-binding (element cannot bind an instance of itself), also true for Putonghua. (Blue)
ii. U cannot bind I just like in English, Putonghua etc. (Red)
(2) y-series: *yi *ye ya yo yu
w-series: *wi *we wa *wo *wu
*yi

yu

Vowel harmony (1)

(1) Presence of U-harmony in a language typically implies I-harmony.

Vowel harmony (1)

(1) Presence of U-harmony in a language typically implies I-harmony.
(2) Also, U-harmony subject to more restrictions than I-harmony (Kaun 1995).

Vowel harmony (1)

(1) Presence of U-harmony in a language typically implies I-harmony.
(2) Also, U-harmony subject to more restrictions than I-harmony (Kaun 1995).
(3) Turkish I spreads to all other (short) nuclei; \mathbf{U} only to high targets (Charette \& Göksel 1996; Polgárdi 1998; Pöchtrager 2010a).

Vowel harmony (1)

(1) Presence of U-harmony in a language typically implies I-harmony.
(2) Also, U-harmony subject to more restrictions than I-harmony (Kaun 1995).
(3) Turkish I spreads to all other (short) nuclei; \mathbf{U} only to high targets (Charette \& Göksel 1996; Polgárdi 1998; Pöchtrager 2010a).
(4) Can (some of the) asymmetries be derived from Binding?

Vowel harmony (2)

(1) [y]: I \& U.

Vowel harmony (2)

(1) [y]: I\& U.
(2) Could in theory arise by
(1) I spreading onto u (Finnish, Hungarian) or
(2) \mathbf{U} spreading onto i (unattested).

Vowel harmony (2)

(1) $[\mathrm{y}]: \mathbf{I} \& \mathbf{U}$.
(2) Could in theory arise by
(1) I spreading onto u (Finnish, Hungarian) or
(2) U spreading onto i (unattested).
3 Assume that 'entry point" is on top of the targeted vowel.

Vowel harmony (2)

(1) $[\mathrm{y}]: \mathbf{I} \& \mathbf{U}$.
(2) Could in theory arise by
(1) I spreading onto u (Finnish, Hungarian) or
(2) \mathbf{U} spreading onto i (unattested).
(3) Assume that 'entry point" is on top of the targeted vowel.
(4) Would require \mathbf{U} to
c-command I, ruled out by binding.

Grammatical Ungrammatical "creation" of [y] "creation" of [y]

$[\mathrm{iCu}] \rightarrow[\mathrm{iCy}]$

$[u C i] \rightarrow[u C y]$

More I/U asymmetries

(1) Turkish, Finnish, French (finally) has two e-type vowels (involving I) but only one o-type vowel (involving U) (Pöchtrager 2009a).

More I/U asymmetries

(1) Turkish, Finnish, French (finally) has two e-type vowels (involving I) but only one o-type vowel (involving U) (Pöchtrager 2009a).
(2) English no front vowels: "I and \mathbf{U} must not combine" - would follow if \mathbf{I} and \mathbf{U} could shown to be forced into an illicit configuration.

More I/U asymmetries

(1) Turkish, Finnish, French (finally) has two e-type vowels (involving I) but only one o-type vowel (involving U) (Pöchtrager 2009a).
(2) English no front vowels: "I and \mathbf{U} must not combine" - would follow if \mathbf{I} and \mathbf{U} could shown to be forced into an illicit configuration.
(3) Binding might serve as a test to probe into internal structure of those objects.

More I/U asymmetries

(1) Turkish, Finnish, French (finally) has two e-type vowels (involving I) but only one o-type vowel (involving U) (Pöchtrager 2009a).
(2) English no front vowels: "I and \mathbf{U} must not combine" - would follow if \mathbf{I} and \mathbf{U} could shown to be forced into an illicit configuration.
(3) Binding might serve as a test to probe into internal structure of those objects.
(4) Only seems possible in hierarchical models, not in purely linear ones.

(1) Setting the stage

(2) Non-Arbitrariness
(3) When are trees needed?
(4) Binding in phonology
(5) Foot inside a foot
(6) Limits of recursion
(7) Conclusion

Self-embedding ("no $\left.\left[{ }_{\sigma}\left[R\left[{ }_{\sigma}\right]\right]\right]^{\prime}\right)$

(1) Self-embedding used in GP 2.0, though no "syllables", "rhymes".

Self-embedding ("no $[\sigma[R[\sigma]]$ ")

(1) Self-embedding used in GP 2.0, though no "syllables", "rhymes".
(2) Trochee (Pöchtrager 2006): 2 ON-pairs, second embedded in first.

Self-embedding ("no $[\sigma[R[\sigma]]]$ ")

(1) Self-embedding used in GP 2.0, though no "syllables", "rhymes".
(2) Trochee (Pöchtrager 2006): 2 ON-pairs, second embedded in first.

3 (Cf. also Hulst 2010b; Smith 1999; García-Bellido 2005; Golston 2016)

Different predictions

(1) Constituent break between initial onset \& rest of the foot. (As opposed to just onset \& nucleus.)

Different predictions

(1) Constituent break between initial onset \& rest of the foot. (As opposed to just onset \& nucleus.)
(2) Good match for distribution of English [h] (initial onset) vs. [g] (elsewhere).

Different predictions

(1) Constituent break between initial onset \& rest of the foot. (As opposed to just onset \& nucleus.)
(2) Good match for distribution of English [h] (initial onset) vs. [g] (elsewhere).
(3) Possibly extends to $[w],[j]$.

Different predictions

(1) Constituent break between initial onset \& rest of the foot. (As opposed to just onset \& nucleus.)
(2) Good match for distribution of English [h] (initial onset) vs. [g] (elsewhere).
(3) Possibly extends to [w], [j].
(4) Exploited in rhyme schemes:
(1) Alliteration: initial onset (pre-stress).
(2) End rhyme: complement (male and female rhyme).

Metrical structure

(1) Usually: Metrical grids or metrical trees (weak/strong branches).
S

Metrical structure

(1) Usually: Metrical grids or metrical trees (weak/strong branches).

(2) Criticism in Neeleman \& van de Koot (2006): weak/strong violate (syntactic) Inclusiveness; not by percolation, rather relational.

Metrical structure

(1) Usually: Metrical grids or metrical trees (weak/strong branches).

(2) Criticism in Neeleman \& van de Koot (2006): weak/strong violate (syntactic) Inclusiveness; not by percolation, rather relational.
(3) Self-embedding allows encoding of metrical prominence, without that problem: Weaker nucleus (projection thereof) embedded in stronger one.

Metrical structure

(1) Usually: Metrical grids or metrical trees (weak/strong branches).

(2) Criticism in Neeleman \& van de Koot (2006): weak/strong violate (syntactic) Inclusiveness; not by percolation, rather relational.
(3) Self-embedding allows encoding of metrical prominence, without that problem: Weaker nucleus (projection thereof) embedded in stronger one.
(4) Hayes's culminativity (Hayes 1995), that at every level there be only one strong branch, comes for free; cf. also (Anderson \& Ewen 1987: 101)

Metrical structure

(1) Usually: Metrical grids or metrical trees (weak/strong branches).

(2) Criticism in Neeleman \& van de Koot (2006): weak/strong violate (syntactic) Inclusiveness; not by percolation, rather relational.
(3) Self-embedding allows encoding of metrical prominence, without that problem: Weaker nucleus (projection thereof) embedded in stronger one.
(4) Hayes's culminativity (Hayes 1995), that at every level there be only one strong branch, comes for free; cf. also (Anderson \& Ewen 1987: 101)
(5) Head of foot: Nucleus which is not itself selected by another nucleus.

Nuclear projection

(1) GP 1.x: nuclei have strong relationship with each other.

Nuclear projection

(1) GP 1.x: nuclei have strong relationship with each other.
(2) Stress, vowel harmony, proper government (V- \emptyset alternations)

Nuclear projection

(1) GP 1.x: nuclei have strong relationship with each other.
(2) Stress, vowel harmony, proper government (V-Ø alternations)
(3) Interact on level of nuclear projection.

Nuclear projection

(1) GP 1.x: nuclei have strong relationship with each other.
(2) Stress, vowel harmony, proper government (V-Ø alternations)
(3) Interact on level of nuclear projection.
(4) Self-embedding structure encodes that as well: nuclear head (or its projection) selects (the projection of) another nuclear head etc.

Nuclear projection

(1) GP 1.x: nuclei have strong relationship with each other.
(2) Stress, vowel harmony, proper government (V-Ø alternations)
(3) Interact on level of nuclear projection.
(4) Self-embedding structure encodes that as well: nuclear head (or its projection) selects (the projection of) another nuclear head etc.
(5) Different from onset phrases: selected by N but do not select themselves.

(1) Setting the stage

(2) Non-Arbitrariness
(3) When are trees needed?
(4) Binding in phonology
(5) Foot inside a foot
(6 Limits of recursion
(7) Conclusion

What are the limits of recursion, if any?

(1) Nasukawa (2015: 235-236): large-scale recursion; limited by performance.

What are the limits of recursion, if any?

(1) Nasukawa (2015: 235-236): large-scale recursion; limited by performance.
(2) Does not immediately explain why monomorphemic phonological objects are not particularly long.

What are the limits of recursion, if any?

(1) Nasukawa (2015: 235-236): large-scale recursion; limited by performance.
(2) Does not immediately explain why monomorphemic phonological objects are not particularly long.
(3) In terms of length, i.e. weak generative capacity, also an issue for "flat" phonological models.

What are the limits of recursion, if any?

(1) Nasukawa (2015: 235-236): large-scale recursion; limited by performance.
(2) Does not immediately explain why monomorphemic phonological objects are not particularly long.
(3) In terms of length, i.e. weak generative capacity, also an issue for "flat" phonological models.
(4) Work on minimal size of phonological domains; virtually no work on maximal size (or whether there even is one).

What are the limits of recursion, if any?

(1) Nasukawa (2015: 235-236): large-scale recursion; limited by performance.
(2) Does not immediately explain why monomorphemic phonological objects are not particularly long.
(3) In terms of length, i.e. weak generative capacity, also an issue for "flat" phonological models.
(4) Work on minimal size of phonological domains; virtually no work on maximal size (or whether there even is one).
(5) Hulst (2010b): infinitely deep embedding plus clean-up mechanism breaking the structures apart and flattening them out for rhythmic reasons.

What are the limits of recursion, if any?

(1) Nasukawa (2015: 235-236): large-scale recursion; limited by performance.
(2) Does not immediately explain why monomorphemic phonological objects are not particularly long.
(3) In terms of length, i.e. weak generative capacity, also an issue for "flat" phonological models.
(4) Work on minimal size of phonological domains; virtually no work on maximal size (or whether there even is one).
(5) Hulst (2010b): infinitely deep embedding plus clean-up mechanism breaking the structures apart and flattening them out for rhythmic reasons.
© Is there a way to avoid problem in the first place?

Addressing system

(1) (One) function of phonology: addressing system for mental lexicon (Kaye 1995; Jensen 2000; Ploch 1996, 1999)

Addressing system

(1) (One) function of phonology: addressing system for mental lexicon (Kaye 1995; Jensen 2000; Ploch 1996, 1999)
(2) Say 10,000 addresses/morphemes needed: CVCV with 5 vowels and 20 consonants sufficient $(20 \times 5 \times 20 \times 5)$.

Addressing system

(11) (One) function of phonology: addressing system for mental lexicon (Kaye 1995; Jensen 2000; Ploch 1996, 1999)
(2) Say 10, 000 addresses/morphemes needed: CVCV with 5 vowels and 20 consonants sufficient ($20 \times 5 \times 20 \times 5$).
(3) Many phonological systems richer, despite counterbalancing effect of phonotactics.

Comparison to morphology

(1) Relies on hierarchical structure (pace Anderson 1992b), yet recursion reaches limits fairly soon outside of compounding.

Comparison to morphology

(1) Relies on hierarchical structure (pace Anderson 1992b), yet recursion reaches limits fairly soon outside of compounding.
(2) Inflectional morphology often terminates morphological construction.

Comparison to morphology

(1) Relies on hierarchical structure (pace Anderson 1992b), yet recursion reaches limits fairly soon outside of compounding.
(2) Inflectional morphology often terminates morphological construction.
(3) Derivational morphology: unclear whether/to what extent recursion (Dressler 1989; Scalise 1992).

Comparison to morphology

(1) Relies on hierarchical structure (pace Anderson 1992b), yet recursion reaches limits fairly soon outside of compounding.
(2) Inflectional morphology often terminates morphological construction.
(3) Derivational morphology: unclear whether/to what extent recursion (Dressler 1989; Scalise 1992).
(4) Re-re-re-write possible, successful interpretation probably requires extralinguistic skills such as counting.

Comparison to morphology

(1) Relies on hierarchical structure (pace Anderson 1992b), yet recursion reaches limits fairly soon outside of compounding.
(2) Inflectional morphology often terminates morphological construction.
(3) Derivational morphology: unclear whether/to what extent recursion (Dressler 1989; Scalise 1992).
(4) Re-re-re-write possible, successful interpretation probably requires extralinguistic skills such as counting.
(5) Nationalisation, ?nationalisationalise, ?? nationalisationalisationalise.

(1) Setting the stage

(2) Non-Arbitrariness
(3) When are trees needed?
(4) Binding in phonology
(5) Foot inside a foot
(6) Limits of recursion
(7) Conclusion

Conclusion

(1) Hierarchy \& recursion not only useful, but necessary for phonology.

Conclusion

(1) Hierarchy \& recursion not only useful, but necessary for phonology.
(2) Applying syntactic thinking to phonological problems turns out to yield fruitful results.

Conclusion

(1) Hierarchy \& recursion not only useful, but necessary for phonology.
(2) Applying syntactic thinking to phonological problems turns out to yield fruitful results.
(3) The machinery used by syntax and phonology to build structure might not be so different after all, while there certainly is a difference in the set of objects glued together.

Conclusion

(1) Hierarchy \& recursion not only useful, but necessary for phonology.
(2) Applying syntactic thinking to phonological problems turns out to yield fruitful results.
(3) The machinery used by syntax and phonology to build structure might not be so different after all, while there certainly is a difference in the set of objects glued together.

Thank you! Köszönöm szépen!

References I

Anderson, John (1992a): Linguistic Representation: Structural Analogy and Stratification. Berlin: Mouton de Gruyter.
Anderson, John \& Ewen, Colin J. (1987): Principles Of Dependency Phonology. Cambridge et al.: Cambridge University Press.
Anderson, Stephen R. (1992b): A-Morphous Morphology. Cambridge: Cambridge University Press.
Barker, Chris (2012): Quantificational Binding Does Not Require C-Command. Linguistic Inquiry, 43, 4, 614-633.
Broadbent, Judith M. (1991): Linking and Intrusive r in English. UCL Working Papers in Linguistics, 3, 281-301.
Cecchetto, Carlo \& Donati, Caterina (2005): (Re)labeling. Cambridge, Mass.: MIT Press.
Charette, Monik \& Göksel, Asli (1996): Licensing constraints and vowel harmony in Turkic languages. SOAS Working Papers in Linguistics \& Phonetics, 6, 1-25.
Сномsкy, Noam (1995): The Minimalist Program. Cambridge, Mass. \& London, UK: MIT Press.
Cobb, Margaret (1995): Vowel Harmony in Zulu and Basque: The Interaction of Licensing Constraints, H-Licensing and Constituent Structure. SOAS Working Papers in Linguistics \& Phonetics, 5, 23-39.
Cobb, Margaret (1997): Conditions on Nuclear Expressions in Phonology. Ph.D. thesis, School of Oriental and African Studies, Department of Linguistics, University of London.
Cyran, Eugeniusz (1997): Resonance Elements in Phonology. A Study in Munster Irish. Lublin: Wydawnictwo Folium.
den Dikken, Marcel \& van der Hulst, Harry (2018): On Some Deep Structural Analogies between Syntax and Phonology. In: Kuniya Nasukawa (ed.) Recursion in Phonology, Berlin, New York: Mouton de Gruyter.

References II

Dressler, Wolfgang U. (1989): Prototypical Differences between Inflection and Derivation. Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikationsforschung, 42, 1, 3-10.
Everaert, Martin B. H., Huybregts, Marinus A. C., Chomsky, Noam, Berwick, Robert C. \& Bolhuis, Johan J. (2015): Structures, Not Strings: Linguistics as Part of the Cognitive Sciences. Trends in Cognitive Sciences, 19, 12, 729-743.
García-Bellido, Paloma (2005): The morphosyntax and syntax of Phonology: The svarabhakti construction in Spanish. Estudios de Lingüística del Español, 22.
Golston, Chris (2016): The rhymes they are a changin': Bob Dylan and syllable structure. Paper presented at Phonology Colloquium, Stockholms Universitet.
Harris, John (1990): Segmental complexity and phonological government. Phonology, 7, 2, 255-301.
Harris, John (1994): English Sound Structure. Oxford et al.: Blackwell.
Hayes, Bruce (1995): Metrical Stress Theory. Principles and Case Studies. Chicago and London: The University of Chicago Press.
Hulst, Harry van der (2006): On the parallel organization of linguistic components. Lingua, 116, 657-688.
Hulst, Harry van der (2010a): A note on recursion in phonology. In: Hulst (2010c), 301-342.
Hulst, Harry van der (2010b): Re recursion. In: Hulst (2010c), xv-liii.
Hulst, Harry van der (ed.) (2010c): Recursion and Human Language. Berlin, New York: Mouton de Gruyter.

Jackendoff, Ray (2007): Language, Consciousness, Culture. Essays on Mental Structure. Cambridge \& London: The MIT Press.

Jensen, Sean (2000): A Computational Approach to the Phonology of Connected Speech. Ph.D. thesis, Department of Linguistics, School of Oriental and African Studies, University of London.

References III

Kaun, Abigail Rhoades (1995): The Typology of Rounding Harmony: An Optimality Theoretic Approach. Ph.D. thesis, University of California, Los Angeles.
Kaye, Jonathan (1989): Phonology: A Cognitive View. Hillsdale, NJ: Lawrence Erlbaum.
Kaye, Jonathan (1990): 'Coda’ Licensing. Phonology, 7, 2, 301-330.
Kaye, Jonathan (1995): Derivations and interfaces. In: Jacques Durand \& Francis Katamba (eds.) Frontiers of Phonology: Atoms, Structures, Derivations, London, New York: Longman. 289-332.
Kaye, Jonathan (2000): A User's Guide to Government Phonology (GP). Ms.
Kaye, Jonathan, Lowenstamm, Jean \& Vergnaud, Jean-Roger (1985): The internal structure of phonological elements: a theory of charm and government. Phonology Yearbook, 2, 303-328.
Kaye, Jonathan, Lowenstamm, Jean \& Vergnaud, Jean-Roger (1990): Constituent structure and government in phonology. Phonology, 7, 2, 193-231.
Kaye, Jonathan \& Pöchtrager, Markus A. (2009): GP 2.0. Paper presented at the "Government Phonology Round Table", April 25, 2009, Piliscsaba/Hungary.
Kaye, Jonathan \& Pöchtrager, Markus A. (2013): GP 2.0. SOAS Working Papers in Linguistics \& Phonetics, 16, 51-64.
Nasukawa, Kuniya (2015): Recursion in the lexical structure of morphemes. In: Henk van Riemsdijk \& Marc van Oostendorp (eds.) Representing Structure in Phonology and Syntax, Berlin: Mouton de Gruyter. 211-238.
Neeleman, Ad \& van de Koot, J. (2006): On syntactic and phonological representations. Lingua, 116, 1524-1552.
Nespor, Marina \& Vogel, Irene (1986): Prosodic Phonology. Dordrecht: Foris.
Nevins, Andrew, Pesetsky, David \& Rodrigues, Cilene (2009): Pirahã Exceptionality: A Reassessment. Language, 85, 2, 355-404.

References IV

Newell, Heather (2017): There Is No Word. Implications For The Phonology-Syntax Interface. Paper presented at the " $40^{\text {th }}$ GLOW Colloquium", 14 March 2017, Leiden, Netherlands.
Ploch, Stefan (1996): The Role of Parsing. SOAS Working Papers in Linguistics \& Phonetics, 6, 76-105.
Ploch, Stefan (1999): Nasals on My Mind. The Phonetic and the Cognitive Approach to the Phonology of Nasality. Ph.D. thesis, School of Oriental \& African Studies, University Of London.
Pöchtrager, Markus A. (2006): The Structure of Length. Ph.D. thesis, University of Vienna.
Pöchtrager, Markus A. (2009a): Does Turkish Diss Harmony. Paper presented at the "6th Old World Conference in Phonology (OCP6), January 21-24, 2009, Edinburgh.
Pöchtrager, Markus A. (2009b): Syntaxy Government Phonology. Paper presented at "Generative Approaches to Contrastive Linguistics 3 (GACL 3)", 15-16 May 2009, University of Cyprus, Nicosia.
Pöchtrager, Markus A. (2010a): Does Turkish Diss Harmony? Acta Linguistica Hungarica, 57, 4, 458-473.
Pöchtrager, Markus A. (2010b): The Structure of A. Paper presented at the " $33^{\text {rd }}$ GLOW Colloquium", 13-16 April 2010, Wrocław, Poland.

Pöchtrager, Markus A. (2012): Deconstructing A. Paper presented at the "MFM Fringe Meeting on Segmental Architecture", 23 May 2012, University of Manchester, Great Britain.
Pöchtrager, Markus A. (2015a): Beyond the Segment. In: Eric Raimy \& Charles Cairns (eds.) The Segment, Hoboken, NJ: Wiley. 44-64.
Pöchtrager, Markus A. (2015b): Binding in Phonology. In: Henk van Riemsdijk \& Marc van Oostendorp (eds.) Representing Structure in Phonology and Syntax, Berlin: Mouton de Gruyter. 255-275.
Pöchtrager, Markus A. (2016): It's all about size. In: Péter Szigetvári (ed.) 70 snippets to mark Ádám Nádasdy's 70th birthday, http://seas3.elte.hu/nadasdy70/pochtrager.html.

References V

Pöchtrager, Markus A. (2018): Sawing off the branch you are sitting on. Acta Linguistica Academica, 65, 1, 47-68.
Polgárdi, Krisztina (1998): Vowel Harmony. An Account in Terms of Government and Optimality. The Hague: Holland Academic Graphics.
Samuels, Bridget (2009): The structure of phonological theory. Ph.D. thesis, Harvard University.
Scalise, Sergio (1992): Generative Morphology. Dordrecht: Foris.
Schane, Sanford A. (1984): The fundamentals of particle phonology. Phonology Yearbook, 1, 129-155.
Scheer, Tobias (2008): Why the Prosodic Hierarchy is a Diacritic and Why the Interface Must be Direct. In: Jutta Hartmann, Veronika Hegedűs \& Henk van Riemsdijk (eds.) Sounds of Silence: Empty Elements in Syntax and Phonology, Amsterdam et al.: Elsevier. 145-192.
Smith, Norval (1999): A preliminary account of some aspects of Leurbost Gaelic syllable structure. In: Harry van der Hulst \& Nancy Ritter (eds.) The syllable: views and facts, Berlin, New York: Mouton de Gruyter. 577-630.
Truckenbrodt, Hubert (1995): Phonological phrases: Their relation to syntax, focus, and prominence. Ph.D. thesis, MIT.

Živanovič, Sašo \& PÖchtrager, Markus A. (2010): GP 2.0 and Putonghua, too. Acta Linguistica Hungarica, 57, 4, 357-380.
Wagner, Michael (2005): Prosody and Recursion. Ph.D. thesis, Massachusetts Institute of Technology.
Yoshida, Shohei (1990): A government-based analysis of the 'mora' in Japanese. Phonology, 7, 331-351.
Yoshida, Shohei (1996): Phonological Government in Japanese. Canberra: The Australian National University.

