Microphonotactics

Péter Szigetvári

Eötvös Loránd University, Budapest
szigetvari@elte.hu

Theoretical and Formal Linguistics, Nantes, 2019-06-11
this is a report of joint work with Péter Rebrus

hierarchy of consonant+plosive (CT) clusters

- ACCESSIBILITY HIERARCHY: a linear ordering of clusters, here by the type of their first member

hierarchy of consonant+plosive (CT) clusters

- ACCESSIBILITY HIERARCHY: a linear ordering of clusters, here by the type of their first member
- IMPLICATION: higher (more "marked") clusters imply lower (less "marked" ones)

hierarchy of consonant+plosive (CT) clusters

- ACCESSIBILITY HIERARCHY: a linear ordering of clusters, here by the type of their first member
- implication: higher (more "marked") clusters imply lower (less "marked" ones)
- the ordering of CT CONSTRUCTIONS:

hierarchy of consonant+plosive (CT) clusters

- ACCESSIBILITY HIERARCHY: a linear ordering of clusters, here by the type of their first member
- IMPLICATION: higher (more "marked") clusters imply lower (less "marked" ones)
- the ordering of CT CONSTRUCTIONS:
NT $<$ RT $<$ ST \ll PT
homorg. nasal liquid fricative heterorg. plosive \{nt yk mp$\} \quad$ \{rt lt rk lp\} \quad \{st sk ft fp xt$\} \quad$ \{kt pt tk pk tp\}
- extending the hierarchy

$$
\mathrm{TT}<\mathrm{NT}<\mathrm{RT}<\mathrm{ST}<\mathrm{PT}<\mathrm{MT}
$$

homorg. plosive
\{pp tt kk\}
heterorg. nasal \{mt mk nk np gt gp$\}$

language typology by accessible CT constructions

	TT	NT	RT	ST	PT	MT	example
0							Hawaiian (Maddieson 2013)
1		\leftrightarrow					Manam (Piggott 1999)
1+	\leftarrow	\longrightarrow					Japanese (Prince 1984), Pali (Zec 1998)
2		\leftarrow	\rightarrow				Diola Fogny (Piggott 1999)
2+	\leftarrow		\rightarrow				Sidamo (Gouskova 2004)
3		\leftarrow		\rightarrow			Basque (Egurtzegi 2003)
3+	\leftarrow			\rightarrow			Italian (Krämer 2009)
4		\leftarrow			\rightarrow		Spanish (Hualde 2014)
4+	\leftarrow				\rightarrow		Hungarian (Siptár \& Törkenczy)
5		\leftarrow				\rightarrow	Kashmiri (Wali \& Koul 1997)
5+	\leftarrow					\rightarrow	Hindi (Kachru 2006)

language typology by accessible CT constructions

	TT	NT	RT	ST	PT	MT	example
0							Hawaiian (Maddieson 2013)
1		\leftrightarrow					Manam (Piggott 1999)
1+	\leftarrow	\rightarrow					Japanese (Prince 1984), Pali (Zec 1998)
2		\leftarrow	\rightarrow				Diola Fogny (Piggott 1999)
2+	\leftarrow		\rightarrow				Sidamo (Gouskova 2004)
3		\leftarrow		\rightarrow			Basque (Egurtzegi 2003)
3+	\leftarrow			\rightarrow			Italian (Krämer 2009)
4		\leftarrow			\rightarrow		Spanish (Hualde 2014)
4+	\leftarrow				\rightarrow		Hungarian (Siptár \& Törkenczy)
5		\leftarrow				\rightarrow	Kashmiri (Wali \& Koul 1997)
5+	\leftarrow					\rightarrow	Hindi (Kachru 2006)

difference in the extensions

language typology by accessible CT constructions

	TT	NT	RT	ST	PT	MT	example
0							Hawaiian (Maddieson 2013)
1		\leftrightarrow					Manam (Piggott 1999)
1+	\leftarrow	\rightarrow					Japanese (Prince 1984), Pali (Zec 1998)
2		\leftarrow	\rightarrow				Diola Fogny (Piggott 1999)
2+	\leftarrow		\rightarrow				Sidamo (Gouskova 2004)
3		\leftarrow		\rightarrow			Basque (Egurtzegi 2003)
3+	\leftarrow			\rightarrow			Italian (Krämer 2009)
4		\leftarrow			\rightarrow		Spanish (Hualde 2014)
4+	\leftarrow				\rightarrow		Hungarian (Siptár \& Törkenczy)
5		\leftarrow				\rightarrow	Kashmiri (Wali \& Koul 1997)
5+	$\stackrel{ }{ }$					\rightarrow	Hindi (Kachru 2006)

difference in the extensions

- MT implies all other types, TT is not implied by any type

language typology by accessible CT constructions

	TT	NT	RT	ST	PT	MT	example
0							Hawaiian (Maddieson 2013)
1		\leftrightarrow					Manam (Piggott 1999)
$1+$	\leftarrow	\rightarrow					Japanese (Prince 1984), Pali (Zec 1998)
2		\leftarrow	\rightarrow				Diola Fogny (Piggott 1999)
2+	\leftarrow		\rightarrow				Sidamo (Gouskova 2004)
3		\leftarrow		\rightarrow			Basque (Egurtzegi 2003)
$3+$	\leftarrow			\rightarrow			Italian (Krämer 2009)
4		\leftarrow			\rightarrow		Spanish (Hualde 2014)
4+	\leftarrow				\rightarrow		Hungarian (Siptár \& Törkenczy)
5		\leftarrow				\rightarrow	Kashmiri (Wali \& Koul 1997)
5+	\leftarrow					\rightarrow	Hindi (Kachru 2006)

difference in the extensions

- MT implies all other types, TT is not implied by any type
- TT > NT < RT < ST < PT < MT

hierarchy based on "complexity"

informational complexity

hierarchy based on "complexity"

informational complexity

- the information required to define the ENTIRE cluster

hierarchy based on "complexity"

informational complexity

- the information required to define the ENTIRE cluster
- schematic calculation of the phonetic "content" of C_{1} wrt C_{2}

phonetic	TT	NT	RT	ST	PT	MT	remarks
information	0	1	$1-2$	$1-2$	2	3	
place			$(+)$	$(+)$	+	+	not needed for homorganic CTs
nasality		+				+	
"sonority"			+				"sonority" or "aperture"
"noise"				+			aperiodic noise
closure					+	+	not needed for (partial) geminates, TT/NT

hierarchy based on "complexity"

informational complexity

- the information required to define the ENTIRE cluster
- schematic calculation of the phonetic "content" of C_{1} wrt C_{2}

phonetic	TT	NT	RT	ST	PT	MT	remarks
information	0	1	$1-2$	$1-2$	2	3	
place			$(+)$	$(+)$	+	+	not needed for homorganic CTs
nasality		+				+	
"sonority"			+				"sonority" or "aperture"
"noise"				+			aperiodic noise
closure					+	+	not needed for (partial) geminates, TT/NT

perceptual distinctiveness (Steriade 1994)
the greater the complexity, the less the distinctiveness

hierarchy based on "complexity"

informational complexity

- the information required to define the ENTIRE cluster
- schematic calculation of the phonetic "content" of C_{1} wrt C_{2}

phonetic	TT	NT	RT	ST	PT	MT	remarks
information	0	1	$1-2$	$1-2$	2	3	
place			$(+)$	$(+)$	+	+	not needed for homorganic CTs
nasality		+				+	
"sonority"			+				"sonority" or "aperture"
"noise"				+			aperiodic noise
closure					+	+	not needed for (partial) geminates, TT/NT

perceptual distinctiveness (Steriade 1994)
the greater the complexity, the less the distinctiveness

- ST can be perceived easily

hierarchy based on "complexity"

informational complexity

- the information required to define the ENTIRE cluster
- schematic calculation of the phonetic "content" of C_{1} wrt C_{2}

phonetic	TT	NT	RT	ST	PT	MT	remarks
information	0	1	$1-2$	$1-2$	2	3	
place			$(+)$	$(+)$	+	+	not needed for homorganic CTs
nasality		+				+	
"sonority"			+				"sonority" or "aperture"
"noise"				+			aperiodic noise
closure					+	+	not needed for (partial) geminates, TT/NT

perceptual distinctiveness (Steriade 1994)
the greater the complexity, the less the distinctiveness

- ST can be perceived easily
- PT is more difficult to perceive (low distinctiveness from TT)

hierarchy based on "complexity"

informational complexity

- the information required to define the ENTIRE cluster
- schematic calculation of the phonetic "content" of C_{1} wrt C_{2}

phonetic	TT	NT	RT	ST	PT	MT	remarks
information	0	1	$1-2$	$1-2$	2	3	
place			$(+)$	$(+)$	+	+	not needed for homorganic CTs
nasality		+				+	
"sonority"			+				"sonority" or "aperture"
"noise"				+			aperiodic noise
closure					+	+	not needed for (partial) geminates, TT/NT

perceptual distinctiveness (Steriade 1994)
the greater the complexity, the less the distinctiveness

- ST can be perceived easily
- PT is more difficult to perceive (low distinctiveness from TT)
- MT is even more difficult to perceive (low distinctiveness from NT)

maximal and minimal complexity

defining accessible CC constructions

maximal and minimal complexity

defining accessible CC constructions

- "traditional" view: accessible CC constructions definable by their MAXIMAL COMPLEXITY

maximal and minimal complexity

defining accessible CC constructions

- "traditional" view: accessible CC constructions definable by their MAXIMAL COMPLEXITY
- no implications about geminates \Rightarrow MINIMAL COMPLEXITY is also needed

maximal and minimal complexity

defining accessible CC constructions

- "traditional" view: accessible CC constructions definable by their MAXIMAL COMPLEXITY
- no implications about geminates \Rightarrow MINIMAL COMPLEXITY is also needed
- restrictions ($c c=$ cluster complexity)

maximal and minimal complexity

defining accessible CC constructions

- "traditional" view: accessible CC constructions definable by their MAXIMAL COMPLEXITY
- no implications about geminates \Rightarrow MINIMAL COMPLEXITY is also needed
- restrictions ($c c=$ cluster complexity)
- minimum requirement: min cc ≤ 1

maximal and minimal complexity

defining accessible CC constructions

- "traditional" view: accessible CC constructions definable by their MAXIMAL COMPLEXITY
- no implications about geminates \Rightarrow MINIMAL COMPLEXITY is also needed
- restrictions ($c c=$ cluster complexity)
- minimum requirement: min cc ≤ 1
- mAXIMUM REQUIREMENT: $\max c c \geq 1$

maximal and minimal complexity

defining accessible CC constructions

- "traditional" view: accessible CC constructions definable by their MAXIMAL COMPLEXITY
- no implications about geminates \Rightarrow MINIMAL COMPLEXITY is also needed
- restrictions ($c c=$ cluster complexity)
- MINIMUM REQUIREMENT: min $c c \leq 1$
- MAXIMUM REQUIREMENT: $\max c c \geq 1$
- CONTIGUITY REQUIREMENT:

$$
c c \geq \min _{L} c c \wedge c c \leq \max _{L} c c \Rightarrow c c \in L
$$

maximal and minimal complexity

defining accessible CC constructions

- "traditional" view: accessible CC constructions definable by their MAXIMAL COMPLEXITY
- no implications about geminates \Rightarrow MINIMAL COMPLEXITY is also needed
- restrictions ($c c=$ cluster complexity)
- MINIMUM REQUIREMENT: min $c c \leq 1$
- MAXIMUM REQUIREMENT: $\max c c \geq 1$
- CONTIGUITY REQUIREMENT:
$C C \geq \min _{L} C C \wedge C C \leq \max _{L} C c \Rightarrow C c \in L$
in prose: if the complexity of a cluster type is larger than the minimum and smaller than the maximum for that language, then that type is accessible in that language

possible intervals defined by MIN, MAX, CONT requirements

	0	1	2	3	min-max	violates
"0+"	\leftrightarrow				0-0	$*_{\text {MAX }}$
1		\leftrightarrow			1-1	
			\leftrightarrow		2-2	$*_{\text {MIN }}$
				\leftrightarrow	3-3	${ }^{\text {MIIN }}$
1+	\leftarrow	\rightarrow			0-1	
2		\leftarrow	\longrightarrow		1-2	
			\leftarrow	\longrightarrow	2-3	$*_{\text {MIN }}$
2+	\leftarrow		\longrightarrow		0-2	
3		\leftarrow		\longrightarrow	1-3	
3+	\leftarrow			\rightarrow	0-3	
		\leftrightarrow		\leftrightarrow	1,3	${ }^{*} \mathrm{CONT}$

analogous implicational scales for segments

	zero	minimal nonzero	others
C+plosive cluster	tt kk pp	nt yk mp	rt rp rk It lp lk...
oral stops (place)	?	t k p	$\mathrm{qct} \widehat{\mathrm{kp}} \mathrm{k}^{\mathrm{w}}$.
vowels (place)	ә/†	i a u	e o y $\varnothing \mathrm{m}$..
approx's (manner)	w/j	rl	U ¢ $\beta \ldots$
fricatives (place)	h	s	$f \int \times \theta \ldots$
diphthongs (?)	ej/ow	aj aw	oj ew uj iw...

plosives and the glottal stop

	P	p t k	other	examples
0				(no plosive: not attested)
$0+$	\leftrightarrow			(only glottal stop: not attested)
1		\leftrightarrow		French, Karok, Ainu, Avar, Chuvash
$1+$	\longleftrightarrow	\longleftrightarrow		Nama, Chamorro, Kanuri, Luo, Tagalog
2		\longleftrightarrow	\longrightarrow	Hungarian, Breton (c), Inuit, Uzbek (q), Diyari (c t)
$2+$	\longleftarrow		\longrightarrow	Bashkir (q), Wolof (c), Haida (c q), Hindi (q t)

vowels

	∂	i a u	other	examples
0				(no vowel: not attested)
$0+$	\leftrightarrow			(only central vowel: not attested)
1		\leftrightarrow		Classical Arabic
$1+$	\longleftrightarrow	\longleftrightarrow		Yupik
2		\longleftrightarrow	\longrightarrow	Czech (e o), Hungarian (e o y \varnothing)
$2+$	\longleftrightarrow		\longrightarrow	Bulgarian (e o), Albanian (e o y)

approximants

	w	Ir	other	examples
0				Pirahã (very rare)
0+	\leftrightarrow			Fe?fe? (very rare)
1		\leftrightarrow		Nama (r), Vietnamese (I), Finnish (1 r)
1+	\leftarrow	$\xrightarrow{ }$		Japanese (r), Navajo (I), Ainu (r), English (1 r)
2		\leftarrow	\rightarrow	Hungarian (u), Fijian, Ewe (γ), Koryak, Nahuatl (β)
2+	\leftarrow		\longrightarrow	Arrente, Lenakel (γ), Spanish ($\gamma \beta$)

fricatives

	h	S	other	examples
0				Dyirbal (very rare)
0+	\leftrightarrow			Hawaiian (very rare)
1		\leftrightarrow		Even, Pohnpeian, Akawaio, Kunimaipa
1+	\leftarrow	\rightarrow		Ainu, A. Greek, Javanese, Kiowa, Khmer, Nepali, Pirahã
2		\leftarrow	\rightarrow	Maasai (f), Songhai (f , French (f), Castilian ($\mathrm{f} \theta \mathrm{x}$), Serbo-Croat (f f)
2+	\leftarrow		\rightarrow	Chamorro (f), Yucatec (f), Yoruba (f), Dutch ($\mathrm{f} \times$), Czech ($\mathrm{f} \times \mathrm{x}$), Eng ($\mathrm{f} \boldsymbol{f}$)

markedness is multidimensional within a type

RT type: C_{2} : coronal $<$ noncoronal; $C_{1}: r<1$

RT	+coronal	- coronal
-lateral	rt	rk rp
+lateral	lt	lk lp

markedness is multidimensional within a type

RT type: C_{2} : coronal < noncoronal; $\mathrm{C}_{1}: \mathrm{r}<1$
RT + coronal -coronal -lateral rt rk rp +lateral It lk Ip
ST type: C_{2} and $\mathrm{C}_{1}:$ coronal < noncoronal
ST
+coronal
+coronal
st
-coronanal

markedness is multidimensional within a type

RT type: C_{2} : coronal $<$ noncoro

RT	+coronal	-coronal
-lateral	rt	rk rp
+lateral	lt	lk lp

ST type: C_{2} and C_{1} : coronal $<$ noncoronal

ST	+coronal	-coronal
+coronal	st	sk sp
-coronal	$\mathrm{ft} \times t$	$\mathrm{fk} \times p$

PT type: C_{2} and C_{1} : coronal $<$ noncoronal (coronal+coronal, ie TT, excluded)

PT	+coronal	-coronal
+coronal	-	tk tp
-coronal	pt kt	pk kp

incomplete accessibility

- the accessibility of a CT-type can be incomplete

incomplete accessibility

- the accessibility of a CT-type can be InCOMPLETE
- the various CT subsets accessible are not random

incomplete accessibility

- the accessibility of a CT-type can be INCOMPLETE
- the various CT subsets accessible are not random
- 5 (of 15) cases are predicted based on markedness:

incomplete accessibility

- the accessibility of a CT-type can be InCOMPLETE
- the various CT subsets accessible are not random
- 5 (of 15) cases are predicted based on markedness:

3

- examples of ST subsets: 1: Lat __\# 2a: Latin

2b: Hun __\#
3: Eng, Finn
4: Hun

st	$*_{\text {sk }}$
$*_{\mathrm{ft}}$	$*_{\mathrm{fk}}$

st	sk
$*_{\mathrm{ft}}$	$*_{\mathrm{fk}}$

st\#	$*_{\text {sp\# }}$
$\mathrm{ft} \mathrm{\#}$	$*_{\mathrm{fp}} \#$

st	sk
$\mathrm{ft} / \mathrm{ht}$	$*_{\mathrm{fk}}$

st	sk
ft	fk

incomplete accessibility

- the accessibility of a CT-type can be incomplete
- the various CT subsets accessible are not random
- 5 (of 15) cases are predicted based on markedness:

2b

3

4

- examples of ST subsets: 1: Lat _ \# 2a: Latin

2b: Hun __\# 3: Eng, Finn
4: Hun

st	$*_{\text {sk }}$
$*_{\mathrm{ft}}$	$*_{\mathrm{fk}}$

st	sk
$*_{\mathrm{ft}}$	$*_{\mathrm{fk}}$

st\#	${ }^{*}$ sp\#
$\mathrm{ft} \#$	${ }^{*} \mathrm{fp} \#$

st	sk
$\mathrm{ft} / \mathrm{ht}$	$*_{\mathrm{fk}}$

st	sk
ft	fk

- examples of PT subsets:

1: Hun vd \# 2a: Hun affr \# 2b: Lat, Eng 3: Finnish 4: Hun

(dd)	*dg
*bd	*bg

(tsts\#)	tsk\#
*pts\#	*pk\# 2

(X)	$*_{t p}$
pt kt	$*_{p k}$

(tt)	tk
pt	${ }^{*} \mathrm{pk}$

(tt)	tk
pt kt	pk

gradual patterning of well-formed clusters

markedness differences between coronals (t ts t) and between noncoronals (k p c) in Hungarian ST clusters

ST	_-t/d	__k/g	__p/b	- c/f	__ts/ck	- t / ds
s/z	st/zd	sk/zg	sp/zb	$\mathrm{sc} /{ }^{*} \mathrm{zf}$	sts/*zck	*st
J/3-	Jt/3d	Jk/39	fp/3b	fc/3t	*fts	* 5 t
f / v _	$\mathrm{ft} / \mathrm{vd}$	$\mathrm{fk} / \mathrm{vg}$	${ }^{*} \mathrm{fp}$	${ }^{*} \mathrm{fc}$	*fts	*ft
x	xt	*xk	*xp	*xc	*xts	**t

accessibility statistics

ratio of accessible and potential clusters in CT types in Hungarian

	TT	NT	RT	ST	PT	MT	all
potential CTs	6	6	12	$24 / 18^{*}$	30	15	$95 / 87$
voiceless	1	1	1	.50	.40	.07	.53
voiced	1	1	.83	.50	.13	0	.40
all	1	1	.92	.50	.27	.03	.46

* no voiced counterpart for x

consonants are better off before a vowel

$$
-\mathrm{V}<\ldots, \ldots \mathrm{C}
$$

consonants are better off before a vowel

_ $\mathrm{V}<$ _ \#, _C

- the perception of consonant(al properties/clusters) deteriorates word finally and preconsonantally (Steriade 1999)

consonants are better off before a vowel

_- $\mathrm{V}<$ _ \#, _C

- the perception of consonant(al properties/clusters) deteriorates word finally and preconsonantally (Steriade 1999)
- Cs are best licensed by V than word finally or preconsonantally (Harris 1997, Cyran 2010)

consonants are better off before a vowel

_ $\mathrm{V}<\ldots$ \#, _C

- the perception of consonant(al properties/clusters) deteriorates word finally and preconsonantally (Steriade 1999)
- Cs are best licensed by V than word finally or preconsonantally (Harris 1997, Cyran 2010)

consequence

consonants are better off before a vowel

_ $\mathrm{V}<\ldots$, __C

- the perception of consonant(al properties/clusters) deteriorates word finally and preconsonantally (Steriade 1999)
- Cs are best licensed by V than word finally or preconsonantally (Harris 1997, Cyran 2010)

consequence

- CT\# clusters are expected to form a subinterval of CTV

consonants are better off before a vowel

$\ldots \vee<\ldots, \ldots$

- the perception of consonant(al properties/clusters) deteriorates word finally and preconsonantally (Steriade 1999)
- Cs are best licensed by V than word finally or preconsonantally (Harris 1997, Cyran 2010)

consequence

- CT\# clusters are expected to form a subinterval of CTV
- CTC clusters are expected to form a subinterval of CTV

consonants are better off before a vowel

_- $V<$ \#, _C

- the perception of consonant(al properties/clusters) deteriorates word finally and preconsonantally (Steriade 1999)
- Cs are best licensed by V than word finally or preconsonantally (Harris 1997, Cyran 2010)

consequence

- CT\# clusters are expected to form a subinterval of CTV
- CTC clusters are expected to form a subinterval of CTV
- the ratios are expected to decrease

context affects the accessibility of clusters

consequence: monotonically decreasing intervals of well-formed CTs
minimal complexity will not be lower and maximal complexity will not be higher word-finally than prevocalically

	TT	NT	RT	ST	PT	MT	
__V	\leftarrow	\longrightarrow					Japanese: no CC\#
_\#							
_-V		\leftarrow		\longrightarrow			Spanish: no CC\#
—\#							
_-V		$\stackrel{ }{2}$				\longrightarrow	Serbo-Croatian: limited CTs before \#
—\#		\leftarrow		\longrightarrow			
-V		\leftarrow				\rightarrow	German: same CTs before V and \#
- \#		\leftarrow				\longrightarrow	
-V	\leftarrow				\longrightarrow		Estonian: final geminates
-\#	\leftarrow			\rightarrow			
_-V	$\stackrel{ }{ }$				\longrightarrow		Finnish: no final CC\#
-\#							

Hungarian CTs

ratios of intervocalic and word-final voiceless and voiced CTs

	TT	NT	RT	ST	PT	MT	all
all CTs	6	6	12	24	30	15	93
$\mathrm{~V} _\mathrm{V}$	1	1	1	.50	.40	.07	.53
V__\#	1	1	.92	.21	.10	0	.33

	DD	ND	RD	ZD	BD	MD	all
all CTs	6	6	12	18	30	15	87
V__V	1	1	.75	.50	.13	0	.39
V__\#	1	.67	.50	.11	.03	0	.22

preconsonantally

like for CTV vs CT\#, we find monotonically decreasing intervals in CTC
min. complexity will not be lower and max. complexity will not be higher

	TT	NT	RT	ST	PT	MT	
_-V	$\stackrel{ }{ }$	\longrightarrow					Japanese: no CCC
__r							
- V	\leftarrow			\rightarrow			Italian: pre-r geminates
- r	\leftarrow			\longrightarrow			
-V					\longrightarrow		Spanish: same CTs before V and r
_-r		\leftarrow			\longrightarrow		
- V	\leftarrow				\longrightarrow		Hungarian: no pre-r geminates
-r		\leftarrow			\rightarrow		
-V	$\stackrel{ }{ }$				\longrightarrow		Hungarian: PTI limited (*ktl, *ptl)
_-1				\longrightarrow			

CTC clusters in Hungarian

"sonority" and voicing hierarchies

	TT	NT	RT	ST	PT	MT	maximally complex example
_-V	\leftarrow				\rightarrow	\rightarrow	labda 'ball', t $\int a: m t \int o g ~ ' m u n c h ' ~$
_-r		\leftarrow	+		\longrightarrow		gardro:b 'wardrobe', ε lektromof 'electric'
_-1		\leftarrow	\rightarrow	\rightarrow			Jmirgli 'sandpaper', muskli 'muscle'
-U		\leftarrow	\rightarrow	\rightarrow			harduer 'hardware', uskue 'about'
- n		\leftarrow	\rightarrow				-, partner 'partner'
- S		$\stackrel{ }{2}$	\longrightarrow				-, sfiyks 'sphynx'/marksifta 'Marxist'
__t/ts		\leftarrow	\rightarrow				-, infarktu 'infarct'/apsorptsijo: 'absorption'
-_k		\leftrightarrow					-, pilintska:zik 'hesitate'
_-p/c	f/ \int						-, 一

Hungarian CTs

ratios of prevocalic and preconsonantal voiceless and voiced CTs

	Tll CTs	6	6	RT	ST	PT
MT						
V__V	1	1	1	24	30	15
V__r	0	.50	.17	.21	.07	.07
V__l	0	.50	.33	.08	0	0
V__u	0	.33	.17	.08	0	0
V__n	0	.17	.08	0	0	0
V__s	0	.33	.08	0	0	0
V_t/ts	0	.33	.08	0	0	0
V__k	0	.17	0	0	0	0
V__p/c/f/J0	0	0	0	0	0	

	DD	ND	RD	ZD	BD	MD
all CTs	6	6	12	18	30	15
V__V	1	1	.75	.50	.13	0
V__r	0	.33	.08	0	0	0
V__l	0	.50	.25	0	0	0
V__u	0	.33	.08	0	0	0
V__n	0	0	0	0	0	0
V__s	0	0	0	0	0	0
V__t/ts	0	0	0	0	0	0
V__k	0	0	0	0	0	0
V_p/c/f/S0	0	0	0	0	0	

all	
v'less	v'ced
.53	.39
.13	.03
.10	.07
.06	.03
.02	0
.03	0
.03	0
.01	0
0	0

English NTs by right-hand environment

	voiceless				voiced			
-V	simpal	wintə	lənt \int ən	tipkə	timbə	hində	d3ind3ə	fingə
-j	ampjuw	kəntjuwz	-	viıkjələm	ambjələnt	hondju:rəs	-	aŋgjələ
w	-	antwə:p	ivent \int wal	baykwət	-	kondwit	-	laygwid3
r	empros	entrij	ventSras	siykrənij	membrejn	həndrad	indzrij	angrij
-_1	templə	antlə	tərantSlə	frayklin	embləm	t \int a:ndlə	-	anglə
-\#	lamp	ant	int 5	ink	korijamb	hand	hind3	long
-N	kəmpnij	sentnə	-	splayknik	-	-	bendzmin	-
S	(glimps*	(t 5 intsij*)	-	(liyks*)	-	-	-	-
T	(emptij*	-	-	(sfiyktə*)	-	-	-	-

* glims, t Sinsij, lins, emtij, sfiytə \Rightarrow no NTS, NTT?

English NTs by right-hand environment

	voiceless				voiced			
-V	simpal	wintə	lənt \int ən	tipkə	timbə	hində	d3ind3ə	fingə
- j	ampjuw	kəntjuwz		vinkjələm	ambjələnt	hondju:rəs	-	aŋgjələ
w	-	antwə:p	ivent \int wal	baykwət	-	kondwit	-	laygwid3
r	empros	entrij	ventSras	siykrənij	membrejn	həndrəd	indzrij	angrij
-	templə	antlə	tərantflə	frayklin	embləm	t Ja:ndlə	-	angla
-\#	lamp	ant	int 5	ink	korijamb	hand	hind3	long
- N	kəmpni	sentnə	-	splayknik	-	-	bend3min	-
S	glimps*)	(t§intsij*)	-	(liyks*)	-	-	-	-
T	(emptij*	-	-	(sfipktə*)	-	-	-	-

* glims, t \int insij, lins, emtij, sfintə \Rightarrow no NTS, NTT?
- simple, winter, luncheon, tinker; timber, hinder, ginger, finger ampule, contuse, vinculum; ambulant, Honduras, angular Antwerp, eventual, banquet; conduit, language empress, entry, venturous, synchrony; memrane, hundred, injury, angry templar, antler, tarantula, franklin; emblem, chandler, angler lamp, ant, inch, ink; choriamb, hand, hinge, langue company, centner, splanchnic; Benjamin
glimpse, chintzy, lynx
empty, sphincter

English NTs and RTs by right context

ratio of accessible and potential clusters in NT types

potential NTs	${\underset{8}{2}}^{V}$	$\begin{gathered} \ldots \\ 8 \end{gathered}$	$\begin{gathered} \quad \mathrm{r} / \mathrm{l} \\ 16 \end{gathered}$	$\begin{gathered} \mathrm{j} / \mathrm{w} \\ 16 \end{gathered}$	$\begin{gathered} \ldots \mathrm{m} / \mathrm{n} \\ 16 \end{gathered}$	${ }_{64}$	$\square_{64}^{\text {T }}$	$\begin{array}{\|c\|} \hline \text { all } \\ 192 \end{array}$
voiceless	1	1	1	. 75	. 38	. 16	. 13	. 34
voiced	1	1	. 94	. 63	. 13	0	0	. 21
all	1	1	. 97	. 69	. 25	. 08	. 06	. 28

English NTs and RTs by right context

ratio of accessible and potential clusters in NT types

potential NTs	${\underset{8}{8}}^{V}$	$\begin{gathered} \text { _\# } \\ 8 \end{gathered}$	$\begin{gathered} \quad \mathrm{r} / \mathrm{l} \\ 16 \end{gathered}$	$\begin{gathered} \mathrm{j} / \mathrm{w} \\ 16 \end{gathered}$	$\begin{gathered} \ldots m / n \\ 16 \end{gathered}$	$\underset{64}{S}$	$\overline{64}^{\top}$	$\begin{gathered} \text { all } \\ 192 \end{gathered}$
voiceless	1	1	1	. 75	. 38	16	. 13	. 34
voiced	1	1	. 94	. 63	. 13	0	0	. 21
all	1	1	. 97	. 69	. 25	. 08	. 06	. 28

ratio of accessible and potential clusters in RT types

potential RTs	\sum_{8}	-\#	_r/l 16	-j/w	$\ldots \mathrm{m} / \mathrm{n}$	- 64	$\square_{64}^{\text {T }}$	$\begin{gathered} \hline \text { all } \\ 192 \end{gathered}$
voiceless	1	1	. 88	. 75	. 63	. 16	. 09	. 35
voiced	1	1	. 75	. 63	. 25	0	0	. 22
all	1	1	. 81	. 69	. 44	. 08	. 05	. 29

all English CTs

ratio of accessible and potential clusters in all types

	$\ldots \mathrm{V}$	$\ldots \#$	$\ldots \mathrm{r} / \mathrm{I}$	$\ldots \mathrm{j} / \mathrm{w}$	$\ldots \mathrm{m} / \mathrm{n}$	$\ldots \mathrm{S}$	-T	all
NT	1	1	.97	.69	.25	.08	.06	.28
RT	1	1	.81	.69	.44	.08	.05	.29
ST	.69	.31	.25	.19	.06	.01	0	.09
PT	.58	.17	.21	.13	0	0	0	.06
MT	.56	.06	.22	.09	0	0	0	.05

conclusions

- phonotactics is too gradual to be captured in a categorical manner (ie by syllable structure): the description of accessible clusters needs a very fine-grained scale

conclusions

- phonotactics is too gradual to be captured in a categorical manner (ie by syllable structure): the description of accessible clusters needs a very fine-grained scale
- the sets of CT clusters in a language can be profiled by contiguous intervals defined by minimal and maximal complexity

conclusions

- phonotactics is too gradual to be captured in a categorical manner (ie by syllable structure): the description of accessible clusters needs a very fine-grained scale
- the sets of CT clusters in a language can be profiled by contiguous intervals defined by minimal and maximal complexity
- the edges of the intervals are characterized by gradually descending ratios

conclusions

- phonotactics is too gradual to be captured in a categorical manner (ie by syllable structure): the description of accessible clusters needs a very fine-grained scale
- the sets of CT clusters in a language can be profiled by contiguous intervals defined by minimal and maximal complexity
- the edges of the intervals are characterized by gradually descending ratios, as a consequence: decisions about individual lexical items has less influence on the overall picture

thanks to

- you all
- the organizers and UniNantes
- NKFI \#119863
slideshow available at
http://seas3.elte.hu/szigetva/papers.html\#nantes19

