A unified treatment of segments and clusters

Péter Rebrus and Péter Szigetvári rebrus@nytud.hu / szigetvari@elte.hu
Hungarian Research Centre for Linguistics / Eötvös Loránd University ICNGL12: Phoneme Inventories Workshop, Oslo 2021-06-18

Issues

1. Mismatches between typological markedness (implications) and representational markedness (information content): ə, i, P, h, or geminates are typologically marked, but representationally unmarked.
2. Problems of phonological segmentation: in certain cases, there is no clear-cut difference between segments and sequences of segments (e.g. prenasalization, pre-/post-aspiration, affricates, diphthongs). There might be valid phonological generalizations in a language supporting both analyses.
3. Representational problem of gradual phonotactics: attested language types exceed the number that can be modelled by means of an economically designed (universal) representation.

Phonological constructions

- are formal units of phonological expressions
- several kinds: segments or sequences (clusters, stress/harmonic domains etc.) but: similar formal and distributional properties
- the sets of available constructions are limited in a language
- a uniform treatment of inventory and phonotactics:
- inventory: the available "segmental" constructions
- phonotactics: the available "sequential" constructions
- systematic restrictions on available constructions:
- universal: implicational universals between available constructions
- language specific: the most "marked" available constructions in a language \rightarrow complexity

Phonological constructions examined in this talk

Consonantal constructions:

1. sequences: consonant+plosive cluster subtype
2. segments: non-nasal stop (plosive) subtype

Vocalic constructions:
3. segments: short non-low monophthong subtype
4. sequences: vowel+offglide (falling diphthong) subtype

Complexity of constructions

- universal complexity scale: linear ordering between constructions of the same type:

$$
\text { least complex cnstr. }<\ldots<\text { moderately complex cnstr. }<\ldots \text { < most complex cnstr. }
$$

- based on articulatory/perceptional information content (not discussed here)
- the available constructions in a language form a contiguous range in the scale, i.e. the available minimal and maximal complexity define all available constructions (emboldened) within the complexity scale:

$$
\text { least } \leq \ldots \leq \text { minimal } \leq \ldots \leq \text { all others } \leq \ldots \leq \text { maximal } \leq \ldots \leq \text { most }
$$

- minimal/maximal complexities (= complexity limits) set up a typology of languages

Example 1: types of consonant+plosive (CT) clusters

- universal complexity scale for CTs:

- cannot be derived from the sonority scale: $\underline{I T}<\underline{N} T ; \underline{N} T<\underline{R} T ; \underline{P} T<\underline{M} T$
- language types (examples):

$$
\begin{aligned}
& \text { *TT < NT < *RT < *ST < *PT (Manam) TT }<\text { NT < *RT < *ST < *PT (Japanese) } \\
& \text { *TT }<\mathbf{N T}<\mathbf{R T}<\text { *ST < *PT (Diola Fogny) TT }<\mathbf{N T}<\mathbf{R T}<\text { *ST < *PT (Sidamo) } \\
& \text { *TT }<\mathbf{N T}<\mathbf{R T}<\mathbf{S T}<* \text { PT (Basque) } \mathbf{T T}<\mathbf{N T}<\mathbf{R T}<\mathbf{S T}<* \text { PT } \quad \text { (Italian) } \\
& \text { *TT }<\mathbf{N T}<\mathbf{R T}<\mathbf{S T}<\mathbf{P T} \quad \text { (Russian) } \quad \mathbf{T T}<\mathbf{N T}<\mathbf{R T}<\mathbf{S T}<\mathbf{P T} \quad \text { (Hungarian) }
\end{aligned}
$$

Example 2: types of non-nasal stops (T)

- universal complexity scale for Ts (simplified):

- language types (examples):

${ }^{*}$? $<\mathbf{t}<\mathbf{k}<{ }^{*}$ p, ${ }^{*} \mathrm{q}<{ }^{*}$ c, ${ }^{\text {t }}$	(Tamasheq)	$\boldsymbol{P}<\mathbf{t}<\mathbf{k}<{ }^{*} \mathrm{p},{ }^{*} \mathrm{q}<{ }^{*} \mathrm{C}$, ${ }^{\text {t }}$	(Tigre)
	(many)	$\boldsymbol{p}<\mathbf{t}<\mathbf{k}<\mathbf{p},{ }^{*} \mathrm{q}<{ }^{*} \mathrm{C},{ }^{*}{ }^{\text {d }}$	(Tagalog)
${ }^{*}$? $<\mathbf{t}<\mathbf{k}<{ }^{*} \mathrm{p}, \mathbf{q}<{ }^{*} \mathrm{C}$, *t	(Aleut)	$\boldsymbol{p}<\mathbf{t}<\mathbf{k}<*$ p, $\mathbf{q}<{ }^{*} \mathrm{C}$, *t	(Itelmen)
${ }^{*}$? $<\mathbf{t}<\mathbf{k}<\mathbf{p}, \mathbf{q}<{ }^{*} \mathrm{C}$, *t	(Kazakh)	$\boldsymbol{P}<\mathbf{t}<\mathbf{k}<\mathbf{p}, \mathbf{q}<{ }^{*} \mathrm{C},{ }^{*}{ }^{\text {t }}$	(Chukchi)
	(Hungarian)	$\boldsymbol{p}<\mathbf{t}<\mathbf{k}<\mathbf{p}$, ${ }^{*} \mathrm{q}<\mathbf{c}$, ${ }^{\text {+ }}$	(Nganasan)
*? $<\mathbf{t}<\mathbf{k}<\mathbf{p}, \mathbf{q}<\mathbf{c}$, *	(Koryak)	$\boldsymbol{p}<\mathbf{t}<\mathbf{k}<\mathbf{p}, \mathbf{q}<\mathbf{c}$, ${ }^{\text {t }}$	(Nuxalk)
${ }^{*}$? $<\mathbf{t}<\mathbf{k}<\mathbf{p}$, ${ }^{\text {q }}$ - $<{ }^{*} \mathrm{C}, \mathbf{t}$	(Bengali)	$\boldsymbol{p}<\mathbf{t}<\mathbf{k}<\mathbf{p},{ }^{\text {, }} \mathbf{q}<{ }^{*} \mathrm{c}, \mathrm{t}$	(Kurukh)
${ }^{*} \mathrm{P}<\mathbf{t}<\mathbf{k}<\mathbf{p}, \mathbf{q}<{ }^{*} \mathrm{C}, \mathbf{t}$	(Pashto)	? $<\mathbf{t}<\mathbf{k}<\mathbf{p}, \mathbf{q}<\mathbf{c}$ t	(Hmong)

Context sensitivity

- complexity limits may vary depending on context: marked (\approx less sonorant) contexts constrain the available constructions, while observing contiguity:
- minimal complexity can be higher in a "difficult" context
- maximal complexity can be lower in a "difficult" context
- graduality:
- complexity limits can differ in several ways depending on the "difficulty" of the context
- complexity limits can change gradually by context

Context sensitivity: right-hand contexts

Occurrence of CT-clusters and plosives in different right contexts in Hungarian (monomorphemic, voiced \& voiceless, voiceless only)

_V	TT $<$ NT $<$ RT $<\mathbf{S T}<\mathbf{P T}<$ MT
-	TT $<$ NT $<\mathbf{R T}<\mathbf{S T}<\mathbf{P T}$
-r	NT $<\mathbf{R T}<\mathbf{S T}<$ PT
_1	NT < RT < ST
_n	NT < RT
t/d	NT < RT
${ }_{-} \mathrm{k} / \mathrm{g}$	NT
${ }_{-}{ }^{\text {j }}$	NT
_ s/z	NT
- ts/dz	NT
_ $5 / 3$	-
_ p/b	-
${ }_{\text {_ }} \mathrm{c} / \mathrm{f}$	-

$$
\begin{array}{llll}
\mathbf{t} & <\mathbf{k}<\mathbf{p}<\mathbf{c} & \text { (all) } \\
\mathbf{t} & <\mathbf{k}<\mathbf{p}<\mathbf{c} & \text { (all) } \\
\mathbf{t} & <\mathbf{k}<\mathbf{p} & \\
\mathbf{t} & <\mathbf{k}<\mathbf{p}<\mathbf{c} & \text { (all) } \\
\mathbf{t} & <\mathbf{k}<\mathbf{p} & \\
\mathbf{t} & <\mathbf{k}<\mathbf{p} & \\
\mathbf{t} & <\mathbf{k}<\mathbf{p}<\mathbf{c} & \text { (all voiceless \& gg) } \\
& \mathbf{k}<\mathbf{p} & \\
& \mathbf{k} & <\mathbf{p} & \\
& \mathrm{k} & <\mathbf{p} & \\
& \mathrm{k} & <\mathbf{p} & \\
& & \mathbf{p}<\mathbf{c} & \\
& & \mathbf{c} & \text { (only cc, H) }
\end{array}
$$

Context sensitivity: left-hand contexts for CT-clusters

Occurrence of voiceless CT-clusters after a: and e: in Hungarian (monomorphemic, content words, not proper nouns, word-finally \& prevocalically)

	0	1	2	3	4	min ... max compl.	
	TT	NT	RT	ST	PT	V	\#
T=coronal	$\begin{aligned} & \hline \text { *a:tt } \\ & \text { *e:tt } \end{aligned}$	a:nt(\#) e:nt(\#)	$\begin{aligned} & \mathbf{a}: \operatorname{Rt}(\#) \\ & \mathbf{e}: \operatorname{Rt}(\#) \end{aligned}$	$\begin{aligned} & \mathbf{a}: \mathbf{S t}(\#) \\ & \mathbf{e}: \mathbf{S t}(\#) \end{aligned}$	$\begin{gathered} \hline \mathrm{a}: P \mathrm{Pt}\left({ }^{*} \#\right) \\ { }^{*}: \mathrm{Pt} \end{gathered}$	$\begin{aligned} & 1 \ldots 4 \\ & 1 \ldots 3 \end{aligned}$	1... 3
T=velar	*a:kk *e:kk	$\begin{aligned} & \text { a:nk(\#) } \\ & \operatorname{e:\eta k}\left({ }^{*} \#\right) \end{aligned}$	$\begin{gathered} \text { a:Rk(*\#) } \\ { }^{*} \text { e:Rk } \end{gathered}$	$\begin{gathered} \hline \text { a:Sk(*\#) } \\ { }^{*} \mathrm{e}: \text { Sk } \end{gathered}$	$\begin{gathered} \hline \text { a:Pk(*\#) } \\ { }^{*} \text { e:Pk } \end{gathered}$	$\begin{aligned} & 1 \ldots 4 \\ & 1 \ldots 1 \end{aligned}$	$1 \ldots 1$
T=labial	$\begin{aligned} & \text { *a:pp } \\ & \text { *e:pp } \end{aligned}$	$\underset{{ }^{2} \mathrm{e}: \mathrm{mp}}{\mathrm{a} \cdot \mathrm{mp}}$	$\begin{gathered} \text { a:Rp(*\#) } \\ \text { *e:Rp } \end{gathered}$	$\begin{gathered} \mathrm{a}: \mathbf{S p}\left({ }^{*} \#\right) \\ { }^{\mathrm{e}} \mathrm{e}: \mathrm{Sp} \end{gathered}$	$\begin{aligned} & \text { *a:Pp } \\ & \text { *e:Pp } \end{aligned}$	$1 \ldots 3$	-
T=palatal	$\begin{aligned} & \hline \text { *a:cc } \\ & \text { *e:cc } \end{aligned}$	*a:nc *e:nc	$\begin{gathered} \mathrm{a}: \mathrm{Rc}\left({ }^{*} \#\right) \\ { }^{*} \mathrm{e}: \mathrm{Rc}^{2} \end{gathered}$	$\begin{gathered} \mathrm{a}: \mathbf{S c}\left({ }^{*} \#\right) \\ { }^{*} \mathrm{e}: \mathrm{Sc} \end{gathered}$	$\begin{aligned} & \text { *a:Pc } \\ & \text { *e:Pc } \end{aligned}$	$2 \ldots 3$	-

Context sensitivity: left-hand contexts of plosives

Occurrence of plosives after fricatives in Hungarian (monomorphemic, content words, not proper nouns, word-finally \& prevocallically)

	1	2	3	4	min ... m	compl
	t/d	k/g	p/b	c/f	_V	_\#
s_	st(\#)	sk(\#)	sp(*\#)	sc(*\#)	1... 4	1... 2
Z_	zd(\#)	zg(*\#)	zb(*\#)	* f	1... 3	1... 1
J_	ft(\#)	Jk(*\#)	fp(*\#)	Jc(*\#)	1... 4	1... 1
3	3d(\#)	39(*\#)	3b(*\#)	3f(*\#)		
f_{\sim}	ft(\#)	fk(*\#)	*fp	*fc	1... 2	1... 1
v_{-}	vd(*\#)	vg(*\#)	*vb	* V_{f}		-
X_{-}	xt(\#)	*xk	*xp	*xc	1... 1	1... 1
	'xd	*xg	*xb	* \times f	-	-

Example 3: types of non-low vowels

- universal complexity scale for backness/roundness (simplified):

- different sets of salient properties and subsumption (partial ordering):

NONE \subset ROUND \sim FRONT \subset FRONTUROUND

- implicative structure:
- ü typically implies u and i, but not always (e.g. Breton, Classical Attic Greek: i, ü, *u).
- ìm can appear without u (e.g. Japanese, Alawa: i, m *u; Arawak, Hopi: i, í, *u)

Example 3: typology of short non-low vowels

total number of vowels: languages
3: Abelam;
2: Arrernte (*i), Adyghe (*i)
5: Spanish, Czech; 4: Navajo (*u), Alawa (*o);
3: Cl. Arabic(*o,*e), Alabama(*u,*e), Amuesha(*u,*i)
7: Romanian;
6: Polish (*ə), Bulgarian (*i); 4: Yupik (only i,u,ə)
8: Finnish, non-reference Hung.; 7: Hungarian;
5: Cl. Attic (*ö), Yukaghir (*ü)
10: Votic, Võro;
9: Estonian (${ }^{*} \ddagger$); 8: Turkish (${ }^{*}$) ; 7: Albanian (${ }^{*}$, ${ }^{*}$)

Example 4: types of vowel+offglide sequences

- universal complexity scale for "falling diphthongs":

$$
\begin{array}{ccc}
\text { ej, ow }<\text { aj, aw }<\begin{array}{c}
\text { oj, ew } \\
\text { homorganic } \\
\text { mid+high }
\end{array} & <\text { iw, uj, uw, ij, } \ldots \\
\text { heterorganic } \\
\text { mid+high }
\end{array} \begin{gathered}
\text { other } \\
(\text { high }+\mathrm{V})
\end{gathered}
$$

- minimal \& maximal complexity = ej/ow: languages in which only homorganic diphthongs occur, usually as variants of long (mid) vowels
- min. \& max. complexity = aj/aw: in many languages, only low-vowel initial diphthongs occur
- min. complexity $=$ ej/ow \& max. complexity = aj/aw: both types occur
- max. complexity \geq oj/ew: non-low-vowel initial heterorganic diphthongs can occur with or without less complex types

Example 4: types of vowel+offglide sequences

ej ${ }^{}$ *W	$\begin{aligned} & <~ * a j \\ & <~ * a w ~ \end{aligned}$		*oj *ew	(no diphthongs) several languages
*ej	$<\mathbf{a j}<$		*oj	Hausa, Arabela
*OW	< aw <		*ew	
*ej	< aj	$<$	*oj	Angas
*Ow	< aw	$<$	*ew	Hungarian (limited)
${ }^{*}$ ej	< aj	$<$	Oj	Koine Greek (+üj)
*ow	< aw	$<$	ew	
*ej	< aj	$<$	oj	German
*ow	< aw	-	*ew	
*ej	< aj	$<$	oj	Iranxe

ej ow	$\begin{aligned} & <\quad \text { *aj } \\ & <\text { *aw } \end{aligned}$	$<$	$\begin{aligned} & \text { *oj } \\ & \text { * } \end{aligned}$	non-ref. Hungarian (+öu)
ej	< *aj	$<$	*oj	Nambakaengo
OW	< *aw	<	*ew	Hopi
ej ow	$\begin{aligned} & <\text { aj } \\ & <\text { aw } \end{aligned}$	$<$	*oj	Mandarin, Burmese
$\begin{aligned} & \text { ej } \\ & \text { ow } \end{aligned}$	$<_{<*}^{<} \text {aj }$	$<$	$\begin{aligned} & \text { *oj } \\ & { }^{*} \mathrm{ew} \end{aligned}$	Breton
ow	< aw	$<$	*ew	Southern Kiwai
ej	$\begin{aligned} & <\text { aj } \\ & <\text { aw } \end{aligned}$	$<$	$\begin{gathered} * \\ \\ * \\ \end{gathered}$	Italian, Baining
$\begin{gathered} \text { ej } \\ \text { ow } \end{gathered}$	$\begin{aligned} & <\mathbf{a j} \\ & <\mathbf{a w} \end{aligned}$	$<$	$\begin{aligned} & \text { oj } \\ & \text { ew } \end{aligned}$	Fijian, Kurdish, Old Latin, Cl. Attic Greek (+üj), Spanish
$\begin{aligned} & \text { ej } \\ & \text { ow } \end{aligned}$	$\begin{aligned} & <\mathbf{a j} \\ & <\mathbf{a w} \end{aligned}$	$<$	${ }^{\mathbf{o j}}$	English, Dani
*ej ow	$\begin{aligned} & <\text { aj } \\ & <\text { aw } \end{aligned}$	$<$	$\begin{aligned} & \text { oj } \\ & 0 \end{aligned}$	S. Welsh

Tentative parallelisms between different complexity scales 1

- zero-grade complexity: no inherent salient property (all other features come from the context)
- (obstruent) consonants ($\mathbf{~}, \mathbf{h}$): no buccal gesture involved
- (non-low) vowels (i, ə): no frontness and roundness involved
- CT-clusters: geminate plosives (TT): no specific place and manner present in C_{1}
- (vocalic sequences: long \mathbf{V} : V_{1} and V_{2} identical, no specific place and manner present in V_{2})
- 1st-grade complexity: least saliency (a minimal set of features present)
- obstruents: unmarked dental/alveolar \mathbf{t} / \mathbf{d} or \mathbf{s} / \mathbf{z} which have the least salient properties
- vowels: either (back) round u/o or front (unrounded) i/e
- clusters: partial geminates (homorganic nasal+plosive NT): C_{1} and C_{2} minimally different (only in nasality)
- diphthongs: homorganic mid $V+$ glide (ej, ow): V_{1} and V_{2} minimally different (only in height)

Tentative parallelisms between different complexity scales 2

- 2nd-grade complexity: cooccurrence of polar salient properties
- plosives: salient place features (labial: p, palatal: c, open: q) cooccur with occlusion
- complex vowels: front and rounded (ü ö)
- clusters: approximant+plosive (RT): both place and manner are specified in C_{1}, but unmarked: the greatest sonority difference: $\mathrm{R}>\mathrm{T}$
- diphthongs: Iow V+glide (aj, aw): both height and frontness are specified for V_{2}, but unmarked: the greatest sonority difference: $a>u$, i
- higher-grade complexities: complex constructions with several different features
- complex articulations: secondary articulations ($\mathbf{k}^{\mathbf{w}}, \mathbf{p}^{\mathbf{j}}, \mathbf{t}^{\varsigma}$ etc)
- clusters: heterorganic stop + plosive (PT, MT): place and/or manner are specified in C_{1} and marked: smaller sonority difference
- diphthongs: heterorganic V+glide (oj, ew): both frontness and roundness are specified,and marked: smaller sonority difference

Summary

- segmental and sequential phonological constraints can be uniformly captured by postulating phonological constructions
- constructions of the same type are ordered by complexity
- language specific restrictions can be expressed by postulating available constructions that constitute contiguous range in the complexity scale
- the typological markedness of representationally unmarked constructions can be explained by the limit on minimal complexity
- universal representation is not needed (and often not sufficient) to capture
- (un)markedness effects
- graduality
- segment/sequence parallelisms

THANK YOU
\& NKFI grant \#119863

