Segmenting clusters (and a look at obstruent clusters)

Péter Szigetvári

Eötvös Loránd University, Budapest
szigetvari@elte.hu

On Constituents Workshop, London, 2017-02-17

counting segments

- chip $\mathrm{t} \int \mathrm{p}$ - one or two skeletal slots?

counting segments

- chip t $\int \mathrm{p}$ - one or two skeletal slots?
- tip thıp - one or two skeletal slots?

counting segments

- chip t $\int \mathrm{p}$ - one or two skeletal slots?
- tip thıp - one or two skeletal slots?
- prince prınts - two or three skeletal slots?

counting segments

- chip t $\int \mathrm{p}$ - one or two skeletal slots?
- tip thıp - one or two skeletal slots?
- prince prınts - two or three skeletal slots?
- loud lawd - one or two constituents?

counting segments

- chip t $\int \mathrm{p}$ - one or two skeletal slots?
- tip thıp - one or two skeletal slots?
- prince prınts - two or three skeletal slots?
- loud lawd - one or two constituents?
- notational conventions aimed at biassing counting: chip $\mathrm{t}^{\mathrm{J}} \mathrm{p}, \mathrm{t} \mathrm{t}_{1 p}, \widehat{\mathrm{t}} \mathrm{J}_{1 p}$, čıp; tip $\mathrm{t}^{\mathrm{h}}{ }_{1 p}$; prince prın ${ }^{\mathrm{t}} \mathrm{s}$; loud lawd

counting segments

- chip t $\int \mathrm{p}$ - one or two skeletal slots?
- tip thıp - one or two skeletal slots?
- prince prınts - two or three skeletal slots?
- loud lawd - one or two constituents?
- notational conventions aimed at biassing counting: chip $\mathrm{t}^{\mathrm{J}} \mathrm{p}, \mathrm{t} \mathrm{t}_{1 p}, \widehat{\mathrm{t}} \mathrm{J}_{1 p}$, čıp; tip $\mathrm{t}^{\mathrm{h}}{ }_{1 p}$; prince prın ${ }^{\mathrm{t}} \mathrm{s}$; loud lawd
- $x y=\left.\left.\right|_{x} ^{0}\right|_{y} ^{0}$

t \int as a cluster

$t \int v s t r$

$\mathrm{t} \int$ as a cluster

$t \int v s t r$

- difference: __C and
_ \#

$\mathrm{t} \int$ as a cluster

$\mathrm{t} \int \mathrm{vs} \operatorname{tr}$

- difference: __C and
—\#
- reason: tr is a risingsonority cluster

$\mathrm{t} \int$ as a cluster

$t \int v s t r$

- difference: __C and
——
- reason: tr is a risingsonority cluster
- how does $\mathrm{t} \int$ compare to an obstruent cluster?

$\mathrm{t} \int$ as a cluster

$\mathrm{t} \int \mathrm{vs} \mathrm{tr}$

- difference: __C and —\#
- reason: tr is a risingsonority cluster
- how does $\mathrm{t} \int$ compare to an obstruent cluster?
$\mathrm{t} \int \mathrm{vs} \mathrm{k} \int / \mathrm{ks}$

	t 5	kJ	t]	k \int	t]	ks ${ }^{1}$
V_-	\checkmark	\checkmark	\checkmark	\checkmark^{2}	\checkmark	\checkmark
C	\checkmark	\checkmark	\checkmark	\checkmark^{3}	\checkmark	\checkmark
\# -	\checkmark	x^{4}	x	x		

$\mathrm{t} \int$ as a cluster

$t \int v s t r$

$\mathrm{t} \int \mathrm{vs} \mathrm{k} \int / \mathrm{ks}$

- difference: __C and —\#
- reason: tr is a risingsonority cluster
- how does $\mathrm{t} \int$ compare to an obstruent cluster?

1. $* \mathrm{k} \int \#$, so we use ks

$\mathrm{t} \int$ as a cluster

$t \int v s t r$

- difference: __C and ——
- reason: tr is a risingsonority cluster
- how does t $\mathrm{\int}$ compare to an obstruent cluster?
$\mathrm{t} \int \mathrm{vs} \mathrm{k} \int / \mathrm{ks}$

1. ${ }^{*} \mathrm{k} \int \#$, so we use ks
2. luxury lák \int rıj

$\mathrm{t} \int$ as a cluster

$t \int v s t r$

- difference: __C and ——
- reason: tr is a risingsonority cluster
- how does $\mathrm{t} \int$ compare to an obstruent cluster?
$\mathrm{t} \int \mathrm{vs} \mathrm{k} \int / \mathrm{ks}$

1. ${ }^{*} \mathrm{k} \int \#$, so we use ks
2. luxury lák \int rıj
3. functional fánkJnəl

$\mathrm{t} \int$ as a cluster

$t \int v s t r$

$\mathrm{t} \int \mathrm{vs} \mathrm{k} \int / \mathrm{ks}$

- difference: __C and —\#
- reason: tr is a risingsonority cluster
- how does $\mathrm{t} \int$ compare to an obstruent cluster?

1. ${ }^{*} \mathrm{k} \int \#$, so we use ks
2. luxury lák \int rıj
3. functional fájkJnəl
4. so $\mathrm{t} \int$ and $\mathrm{k} \int / \mathrm{ks}$ are different only \#__V

t \int as a segment

$\mathrm{t} \int \mathrm{vs} \mathrm{t}$

$\mathrm{t} \int$ as a segment

$\mathrm{t} \int \mathrm{vs} \mathrm{t}$

- different \#_C

$\mathrm{t} \int$ as a segment

$\mathrm{t} \int \mathrm{vs} \mathrm{t}$

- different \#__C
- the distributions of both $\mathrm{t} \int-\mathrm{k} \int / \mathrm{ks}$ and $\mathrm{t} \int-\mathrm{t}$ differ in one cell

$\mathrm{t} \int$ as a segment

$\mathrm{t} \int \mathrm{vs} \mathrm{t}$

- different \#__C
- the distributions of both $\mathrm{t} \int-\mathrm{kJ} / \mathrm{ks}$ and $\mathrm{t} \int-\mathrm{t}$ differ in one cell
so far its distribution does not convincingly decide if $t \int$ is a segment or a cluster

$\mathrm{t} \int$ and $\mathrm{ks} / \mathrm{C} \ldots \#$

	__t $\#$	ks\#
عj__	1	2
${ }^{1} \mathrm{j}$	17	0
aj_-	0	1
oj_-	0	1
əw_-	10	2
tw_	6	8
aw_	8	2
:-	18	4
n / \square	66	31
I_-	9	4

$\mathrm{t} \int$ and ks / C__\#

	__t $\#$	ks\#
£j_	1	2
1j-	17	0
aj-	0	1
oj-_	0	1
əw_-	10	2
HW-	6	8
aw_	8	2
:-	18	4
n/n	66	31
I_	9	4

- the differences may be due to the coronality effect, of word-final

$\mathrm{t} \int$ and ks / C__\#

	__t $\#$	ks\#
£j_	1	2
1j-	17	0
aj-	0	1
oj-_	0	1
əw_-	10	2
HW-	6	8
aw_	8	2
:-	18	4
n/n	66	31
I_	9	4

- the differences may be due to the coronality effect, cf word-final
- nt 1422, ŋk 164; It 133, Ik 23

$\mathrm{t} \int$ and ks / C__\#

	-_t ${ }^{\text {\# }}$	ks\#
عj_	1	2
${ }^{1} \mathrm{j}$	17	0
aj_	0	1
oj-	0	1
əw_-	10	2
tw-	6	8
aw_	8	2
:-	18	4
n / \square	66	31
I_-	9	4

- the differences may be due to the coronality effect, cf word-final
- nt 1422, ŋk 164; It 133, Ik 23
- jt 1606, jk 295; wt 399, wk 105

$\mathrm{t} \int$ and ks / C__\#

	- t¢ \#	ks\#
عj_	1	2
${ }^{1} \mathrm{j}$	17	0
aj_	0	1
oj-_	0	1
əw_-	10	2
tw-	6	8
aw_	8	2
:-	18	4
n/n-	66	31
I_	9	4

- the differences may be due to the coronality effect, cf word-final
- nt 1422, ŋk 164; It 133, Ik 23
- jt 1606, jk 295; wt 399, wk 105
- we have :nt \int, but not *inks

$\mathrm{t} \int$ and ks / C__\#

	- t5 \#	_ks\#
عj_	1	2
1j-	17	0
aj_	0	1
oj-_	0	1
əw_-	10	2
tw-	6	8
aw_	8	2
:-	18	4
n / n	66	31
I_-	9	4

- the differences may be due to the coronality effect, cf word-final
- nt 1422, ŋk 164; It 133, Ik 23
- jt 1606, jk 295; wt 399, wk 105
- we have int \int, but not *inks
- but also :nt vs *:nk!

$\mathrm{t} \int$ and $\mathrm{ks} / \mathrm{C} \ldots \#$

	__t $\#$	ks\#	
عj_	1	2	
${ }^{1} \mathrm{j}$	17	0	- the differences may be due to the
aj_	0	1	coronality effect, of word-final
oj-_	0	1	- nt 1422, 7 l 164; It 133, Ik 23
əw-	10	2	jt 1606, jk 295. wt 399, wk
\#w-	6	8	- jt 1606, jk 295
aw_	8	2	- we have intj, but not *:nks
:-	18	4	- but also :nt vs *:jk!
n/n-	66	31	
I_-	9	4	

word-final plosive+fricative

	p-	t-	k-
$-s$	33	61	350
$-\int$	0	289	0

word-initial rising-sonority clusters (aka branching onsets)
nonstrident obstruent (except v ð)+approximant

	w		r	j	h
$p / b / f$	(\checkmark)	\checkmark	\checkmark	\checkmark	?
t/d/日	\checkmark	(\checkmark)	\checkmark	(\checkmark)	?
k/g	\checkmark	\checkmark	\checkmark	\checkmark	?

we here ignore $\mathrm{Cj}(\mathrm{eg} \mathrm{mj}, \mathrm{lj}, \mathrm{hj}$ etc)
word-initial rising-sonority clusters (aka branching onsets)
nonstrident obstruent (except v ð)+approximant

	w		r	j	h
p/b/f	(\checkmark)	\checkmark	\checkmark	\checkmark	\checkmark
t/d/ $/ \theta$	\checkmark	(\checkmark)	\checkmark	(\checkmark)	\checkmark
k/g	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

we here ignore $\mathrm{Cj}(\mathrm{eg} \mathrm{mj}, \mathrm{lj}, \mathrm{hj}$ etc)
could it be that pin, tin, kin begin with a cluster?
word-initial rising-sonority clusters (aka branching onsets)
nonstrident obstruent (except v ð)+approximant

	w		r	j	h
p/b/f	(\checkmark)	\checkmark	\checkmark	\checkmark	\checkmark
t/d/g	\checkmark	(\checkmark)	\checkmark	(\checkmark)	\checkmark
k/g	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

we here ignore Cj (eg mj, lj, hj etc)
could it be that pin, tin, kin begin with a cluster?

- pin phın vs bin pın, prim phrım or prım (vs brim prım)
word-initial rising-sonority clusters (aka branching onsets)
nonstrident obstruent (except v ð)+approximant

	w		r	j	h
p/b/f	(\checkmark)	\checkmark	\checkmark	\checkmark	\checkmark
t/d/g	\checkmark	(\checkmark)	\checkmark	(\checkmark)	\checkmark
k/g	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

we here ignore Cj (eg mj, lj, hj etc)
could it be that pin, tin, kin begin with a cluster?

- pin phın vs bin pın, prim phrım or prım (vs brim prım)
- distribution of aspirated plosives $=$ distribution of h
word-initial rising-sonority clusters (aka branching onsets)
nonstrident obstruent (except v ð)+approximant

	w		r	j	h
p/b/f	(\checkmark)	\checkmark	\checkmark	\checkmark	\checkmark
t/d/g	\checkmark	(\checkmark)	\checkmark	(\checkmark)	\checkmark
k/g	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

we here ignore Cj (eg mj, lj, hj etc)
could it be that pin, tin, kin begin with a cluster?

- pin phın vs bin pın, prim phrım or prım (vs brim prım)
- distribution of aspirated plosives $=$ distribution of h
- some consequences
word-initial rising-sonority clusters (aka branching onsets)
nonstrident obstruent (except v ð)+approximant

	w		r j		h
p/b/f	($\sqrt{ }$)	\checkmark	\checkmark	\checkmark	\checkmark
t/d/ θ	\checkmark	$(\sqrt{ }$)	\checkmark	(\checkmark)	\checkmark
k/g	\checkmark	\checkmark	\checkmark	,	\checkmark

we here ignore Cj (eg mj, lj, hj etc)
could it be that pin, tin, kin begin with a cluster?

- pin phın vs bin pın, prim phrım or prım (vs brim prım)
- distribution of aspirated plosives $=$ distribution of h
- some consequences
- E has no laryngeal distinction in obstruents (ptt kf $0 \mathrm{~s} \int$)
nonstrident obstruent (except v ð)+approximant

	w I		r j		h
p/b/f	($\sqrt{ }$)	\checkmark	\checkmark	\checkmark	\checkmark
t/d/ θ)	($\sqrt{ }$)	\checkmark	(\checkmark)	\checkmark
k/g	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

we here ignore Cj (eg mj, lj, hj etc)
could it be that pin, tin, kin begin with a cluster?

- pin phın vs bin pın, prim phrım or prım (vs brim prım)
- distribution of aspirated plosives $=$ distribution of h
- some consequences
- E has no laryngeal distinction in obstruents (ptt kf $\begin{gathered}\text { s } \int \text {) }\end{gathered}$
- if prom, E has two sets of approximants (w I r j vs w! ! j j)
nonstrident obstruent (except v ð)+approximant

	w I		r j		h
p/b/f	($\sqrt{ }$)	\checkmark	\checkmark	\checkmark	\checkmark
t/d/ θ)	($\sqrt{ }$)	\checkmark	(\checkmark)	\checkmark
k/g	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

we here ignore Cj (eg mj, lj, hj etc)
could it be that pin, tin, kin begin with a cluster?

- pin phın vs bin pın, prim phrım or prım (vs brim prım)
- distribution of aspirated plosives $=$ distribution of h
- some consequences
- E has no laryngeal distinction in obstruents (ptt kf
- if prım, E has two sets of approximants (w I r j vs w! ! j j)
- if phrım, E has CCC onset clusters
can we extend this analysis to fricatives?
- frill fhrıl, thrill θ hrıl, but ${ }^{*} \mathrm{fr},{ }^{*} \theta \mathrm{r}$
can we extend this analysis to fricatives?
- frill fhrıl, thrill θ hrıl, but ${ }^{*} \mathrm{fr},{ }^{*} \theta \mathrm{r}$
- the distribution of fortis fricatives is freer than that of h (eg offer, off, often)
can we extend this analysis to fricatives?
- frill fhrıl, thrill θ hrıl, but ${ }^{*} \mathrm{fr},{ }^{*} \theta r$
- the distribution of fortis fricatives is freer than that of h (eg offer, off, often)
- fricative+plosive clusters in English
can we extend this analysis to fricatives?
- frill fhrıl, thrill θ hrıl, but ${ }^{*} \mathrm{fr},{ }^{*} \theta \mathrm{r}$
- the distribution of fortis fricatives is freer than that of h (eg offer, off, often)
- fricative+plosive clusters in English
- sp: eg husband héspənd (rare)
can we extend this analysis to fricatives?
- frill fhrıl, thrill θ hrıl, but *fr, * θ r
- the distribution of fortis fricatives is freer than that of h (eg offer, off, often)
- fricative+plosive clusters in English
- sp: eg husband háspand (rare)
- sph: eg gazpatcho gasphátJəw (very rare)

can we extend this analysis to fricatives?

- frill fhrıl, thrill θ hrıl, but ${ }^{*} \mathrm{fr},{ }^{*} \theta \mathrm{r}$
- the distribution of fortis fricatives is freer than that of h (eg offer, off, often)
- fricative+plosive clusters in English
- sp: eg husband héspend (rare)
- sph: eg gazpatcho gasphát \int əw (very rare)
- shp: eg aspect áshpekt (most common)

can we extend this analysis to fricatives?

- frill fhrıl, thrill θ hrıl, but ${ }^{*} \mathrm{fr},{ }^{*} \theta \mathrm{r}$
- the distribution of fortis fricatives is freer than that of h (eg offer, off, often)
- fricative+plosive clusters in English
- sp: eg husband héspend (rare)
- sph: eg gazpatcho gasphát \int əw (very rare)
- shp: eg aspect áshpekt (most common)
- *shph: impossible

can we extend this analysis to fricatives?

- frill fhrıl, thrill θ hrıl, but ${ }^{*} \mathrm{fr},{ }^{*} \theta \mathrm{r}$
- the distribution of fortis fricatives is freer than that of h (eg offer, off, often)
- fricative+plosive clusters in English
- sp: eg husband héspend (rare)
- sph: eg gazpatcho gasphát \int əw (very rare)
- shp: eg aspect áshpekt (most common)
- *shph: impossible
- expectation based on complexity (shph \supset shp, sph $\supset \mathrm{sp}$) is not borne out

can we extend this analysis to fricatives?

- frill fhrıl, thrill θ hrıl, but ${ }^{*} \mathrm{fr},{ }^{*} \theta \mathrm{r}$
- the distribution of fortis fricatives is freer than that of h (eg offer, off, often)
- fricative+plosive clusters in English
- sp: eg husband héspənd (rare)
- sph: eg gazpatcho gasphát \int əw (very rare)
- shp: eg aspect áshpekt (most common)
- *shph: impossible
- expectation based on complexity (shph \supset shp, sph $\supset \mathrm{sp}$) is not borne out
- $\Rightarrow \mathrm{no}$!
can we analyse plosives like this?
- some accents have ph, th, kh, but not h
can we analyse plosives like this?
- some accents have ph, th, kh, but not h
- why is bat path pronounced as [paPt]?
can we analyse plosives like this?
- some accents have ph, th, kh, but not h
- why is bat path pronounced as [paPt]?
- cf bad pat [paat]

can we analyse plosives like this?

- some accents have ph, th, kh, but not h
- why is bat path pronounced as [paPt]?
- cf bad pat [paat]
- perhaps it is paht? ie, fortis devoices/shortens adjacent vowel

can we analyse plosives like this?

- some accents have ph, th, kh, but not h
- why is bat path pronounced as [paPt]?
- cf bad pat [paat]
- perhaps it is paht? ie, fortis devoices/shortens adjacent vowel
- but if their temporal order is not fixed, t and h can hardly be separate segments

can we analyse plosives like this?

- some accents have ph, th, kh, but not h
- why is bat path pronounced as [paPt]?
- cf bad pat [paat]
- perhaps it is paht? ie, fortis devoices/shortens adjacent vowel
- but if their temporal order is not fixed, t and h can hardly be separate segments: a further argument for cluster $t \int$!

can we analyse plosives like this?

- some accents have ph, th, kh, but not h
- why is bat path pronounced as [paPt]?
- cf bad pat [paat]
- perhaps it is paht? ie, fortis devoices/shortens adjacent vowel
- but if their temporal order is not fixed, t and h can hardly be separate segments: a further argument for cluster $t \int$!
- fortis obstruents (clusters?) appear to be less marked than lenis obstruents (singleton segments): eg *lk (exc Glenelg) vs Ikh (silk), *mp vs mph (camp)

can we analyse plosives like this?

- some accents have ph, th, kh, but not h
- why is bat path pronounced as [paPt]?
- cf bad pat [paat]
- perhaps it is paht? ie, fortis devoices/shortens adjacent vowel
- but if their temporal order is not fixed, t and h can hardly be separate segments: a further argument for cluster $t \int$!
- fortis obstruents (clusters?) appear to be less marked than lenis obstruents (singleton segments): eg *lk (exc Glenelg) vs Ikh (silk), *mp vs mph (camp)
- how do beeper and Bieber differ?

can we analyse plosives like this?

- some accents have ph, th, kh, but not h
- why is bat path pronounced as [paPt]?
- cf bad pat [paat]
- perhaps it is paht? ie, fortis devoices/shortens adjacent vowel
- but if their temporal order is not fixed, t and h can hardly be separate segments: a further argument for cluster $t \int$!
- fortis obstruents (clusters?) appear to be less marked than lenis obstruents (singleton segments): eg *lk (exc Glenelg) vs Ikh (silk), *mp vs mph (camp)
- how do beeper and Bieber differ?
- píjphə vs píjpə, but *hə

can we analyse plosives like this?

- some accents have ph, th, kh, but not h
- why is bat path pronounced as [paPt]?
- cf bad pat [paat]
- perhaps it is paht? ie, fortis devoices/shortens adjacent vowel
- but if their temporal order is not fixed, t and h can hardly be separate segments: a further argument for cluster $t \int$!
- fortis obstruents (clusters?) appear to be less marked than lenis obstruents (singleton segments): eg *lk (exc Glenelg) vs Ikh (silk), *mp vs mph (camp)
- how do beeper and Bieber differ?
- píjphə vs píjpə, but *hə
- so píjphə \rightarrow píjpə, ie the two words merge

can we analyse plosives like this?

- some accents have ph, th, kh, but not h
- why is bat path pronounced as [paPt]?
- cf bad pat [paat]
- perhaps it is paht? ie, fortis devoices/shortens adjacent vowel
- but if their temporal order is not fixed, t and h can hardly be separate segments: a further argument for cluster $t \int$!
- fortis obstruents (clusters?) appear to be less marked than lenis obstruents (singleton segments): eg *Ik (exc Glenelg) vs lkh (silk), *mp vs mph (camp)
- how do beeper and Bieber differ?
- píjphə vs píjpə, but *hə
- so píjphə \rightarrow píjpa, ie the two words merge
- unless we have rule ordering: píjpə \rightarrow píjbə ordered before the "deaspiration" rule

an excursus: obstruent clusters in English

1.	sets	obs	truen		rked	un	arked	
	p	in	t ${ }^{\text {d }}$	k	${ }_{\text {f }}$	$\stackrel{\theta}{ }$	s	fchin
2.	b		d3		v	¢		
	bin	din	gin	Ginn	Vince	this	zinc	Gide

an excursus: obstruent clusters in English

1.	sets	t	t5	k	f	2.	s	
	pin	tin	chin	kin	fin	thin	sin	shin
2.	b	d	d3	g	v	${ }^{\text {¢ }}$	z	3
	bin	din	gin	Ginn	Vince	this	zinc	Gide

three types of two-obstuent clusters
an excursus: obstruent clusters in English
two sets of obstruents: 1. marked, 2. unmarked

three types of two-obstuent clusters

1. lenis+lenis: zb (husband), bd (abdomen), dzd (changed)
an excursus: obstruent clusters in English
two sets of obstruents: 1. marked, 2. unmarked

three types of two-obstuent clusters
2. lenis+lenis: zb (husband), bd (abdomen), d3d (changed)
3. lenis+fortis: zt (Aztec), vt (naiveté), d3t (vegetable)
an excursus: obstruent clusters in English
two sets of obstruents: 1. marked, 2. unmarked

three types of two-obstuent clusters
4. lenis+lenis: zb (husband), bd (abdomen), dzd (changed)
5. lenis+fortis: zt (Aztec), vt (naiveté), d3t (vegetable)
6. fortis+lenis: sg (school), fd (after), kd (anecdote)
an excursus: obstruent clusters in English
two sets of obstruents: 1. marked, 2. unmarked

three types of two-obstuent clusters
7. lenis+lenis: zb (husband), bd (abdomen), dzd (changed)
8. lenis+fortis: zt (Aztec), vt (naiveté), d3t (vegetable)
9. fortis+lenis: sg (school), fd (after), kd (anecdote)
fortis+fortis clusters ruled out (\leftarrow marked!) apparent fortis+fortis clusters: pt kt t.ft ft fk sp st st sk ps ts ks
apparent fortis+fortis clusters initial
apparent fortis+fortis clusters
initial

- s+plosive, plosive not aspirated (= lenis): sb sd sd3 sg
apparent fortis+fortis clusters
initial
- s+plosive, plosive not aspirated (= lenis): sb sd sd3 sg
final

apparent fortis+fortis clusters

initial

- s+plosive, plosive not aspirated (= lenis): sb sd sd3 sg
final
- past/3sg/plur: tacked takd, tacks takz

apparent fortis+fortis clusters

initial

- s+plosive, plosive not aspirated (= lenis): sb sd sd3 sg
final
- past/3sg/plur: tacked takd, tacks takz (\rightarrow tact takd, tax takz)

apparent fortis+fortis clusters

initial

- s+plosive, plosive not aspirated (= lenis): sb sd sd3 sg
final
- past/3sg/plur: tacked takd, tacks takz (\rightarrow tact takd, tax takz)
- advantage: two allomorphs only (d/əd, z/əz)

apparent fortis+fortis clusters

initial

- s+plosive, plosive not aspirated (= lenis): sb sd sd3 sg
final
- past/3sg/plur: tacked takd, tacks takz (\rightarrow tact takd, tax takz)
- advantage: two allomorphs only (d/əd, z/əz) medial

apparent fortis+fortis clusters

initial

- s+plosive, plosive not aspirated (= lenis): sb sd sd3 sg
final
- past/3sg/plur: tacked takd, tacks takz (\rightarrow tact takd, tax takz)
- advantage: two allomorphs only (d/əd, z/əz) medial
- kasbah kázbə, Casper kásbə, gazpatcho gazpát〔əw, Azkaban ázkəban

apparent fortis+fortis clusters

initial

- s+plosive, plosive not aspirated (= lenis): sb sd sd3 sg
final
- past/3sg/plur: tacked takd, tacks takz (\rightarrow tact takd, tax takz)
- advantage: two allomorphs only (d/əd, z/əz)
medial
- kasbah kázbə, Casper kásbə, gazpatcho gazpát•əw, Azkaban ázkəban
- exam əgzám, excite əgsájt, octet Jgtét, actor ágtə

apparent fortis+fortis clusters

initial

- s+plosive, plosive not aspirated (= lenis): sb sd sd3 sg
final
- past/3sg/plur: tacked takd, tacks takz (\rightarrow tact takd, tax takz)
- advantage: two allomorphs only (d/əd, z/əz)

medial

- kasbah kázbə, Casper kásbə, gazpatcho gazpát $\int ə w$, Azkaban ázkəban
- exam əgzám, excite əgsájt, octet Jgtét, actor ágtə
- problem: act akd vs actor agtə, acted ágtəd (no other fortis-lenis alternation in English)

apparent fortis+fortis clusters

initial

- s+plosive, plosive not aspirated (= lenis): sb sd sd3 sg
final
- past/3sg/plur: tacked takd, tacks takz (\rightarrow tact takd, tax takz)
- advantage: two allomorphs only (d/əd, z/əz)

medial

- kasbah kázbə, Casper kásbə, gazpatcho gazpát $\int ə w$, Azkaban ázkəban
- exam əgzám, excite əgsájt, octet Jgtét, actor ágtə
- problem: act akd vs actor agtə, acted ágtəd (no other fortis-lenis alternation in English)
back to counting segments. . .

epenthesis of fortis plosive between nasal \& fortis fricative

- ancient ε ह́jn $\langle\mathbf{t}\rangle$ Jənt, censure sén $\langle\mathbf{t}\rangle \int$ əə, mensch mén $\langle\mathbf{t}\rangle \int$
- fortition of fricative to affricate?

epenthesis of fortis plosive between nasal \& fortis fricative

- ancient ε éjn $\langle\mathbf{t}\rangle$ Jəət, censure sén $\langle\mathbf{t}\rangle \int$ əə, mensch mén $\langle\mathbf{t}\rangle \int$
- fortition of fricative to affricate?
- answer áan $\langle\mathbf{t}\rangle$ sə, censor sén $\langle\mathbf{t}\rangle$ sə, prince prín $\langle\mathbf{t}\rangle$ s

- fortition of fricative to affricate?
- answer áın $\langle\mathrm{t}\rangle$ sə, censor sén $\langle\mathrm{t}\rangle$ sə, prince prín $\langle\mathrm{t}\rangle$ s
- amphora ám $\langle\mathbf{p}\rangle$ fərə, Samson sám $\langle\mathbf{p}\rangle$ sən, infant ín $\langle\mathbf{t}\rangle$ fənt, anthem án $\langle\mathrm{t}\rangle$ Өəm, ninth nájn $\langle\mathrm{t}\rangle \theta$, warmth wo:m $\langle\mathrm{p}\rangle \theta$, length léŋ $\langle\mathbf{k}\rangle \theta$, youngster jóŋ〈k \langle stə (data from LPD3)

- fortition of fricative to affricate?
- answer á:n $\langle\mathrm{t}\rangle$ sə, censor sén $\langle\mathrm{t}\rangle$ sə, prince prín $\langle\mathrm{t}\rangle$ s
- amphora ám $\langle\mathbf{p}\rangle$ fərə, Samson sám $\langle\mathbf{p}\rangle$ sən, infant ín $\langle\mathbf{t}\rangle$ fənt, anthem án $\langle\mathrm{t}\rangle$ Өəm, ninth nájn $\langle\mathrm{t}\rangle \theta$, warmth wo:m $\langle\mathrm{p}\rangle \theta$, length léŋ $\langle\mathbf{k}\rangle \theta$, youngster jóŋ〈k \langle stə (data from LPD3)
- \Rightarrow the result is not an affricate
－ancient ε éjn $\langle\mathbf{t}\rangle$ Jənt，censure sén $\langle\mathbf{t}\rangle \int$ əə，mensch mén $\langle\mathbf{t}\rangle \int$
－fortition of fricative to affricate？
－answer áan $\langle\mathbf{t}\rangle$ sə，censor sén $\langle\mathbf{t}\rangle$ sə，prince prín $\langle\mathbf{t}\rangle$ s
－amphora ám $\langle\mathbf{p}\rangle$ fərə，Samson sám $\langle\mathbf{p}\rangle$ sən，infant ín $\langle\mathbf{t}\rangle$ fənt， anthem án $\langle\mathbf{t}\rangle$ Өəm，ninth nájn $\langle\mathrm{t}\rangle \theta$ ，warmth wo：m $\langle\mathrm{p}\rangle \theta$ ， length lév $\langle\mathbf{k}\rangle \theta$ ，youngster jóŋ〈k \langle stə（data from LPD3）
－\Rightarrow the result is not an affricate
－occurs only before unstressed vowel and word finally，not before a stressed vowel：eg ensure $1 \mathrm{n}^{*}\langle\mathrm{t}\rangle$ Jo¿， incest ín＊〈t＞sest，confess kən＊〈t＞fés

－fortition of fricative to affricate？
－answer áan $\langle\mathbf{t}\rangle$ sə，censor sén $\langle\mathbf{t}\rangle$ sə，prince prín $\langle\mathbf{t}\rangle$ s
－amphora ám $\langle\mathbf{p}\rangle$ fərə，Samson sám $\langle\mathbf{p}\rangle$ sən，infant ín $\langle\mathbf{t}\rangle$ fənt， anthem án $\langle\mathbf{t}\rangle$ Өəm，ninth nájn $\langle\mathrm{t}\rangle \theta$ ，warmth wo：m $\langle\mathrm{p}\rangle \theta$ ， length lév $\langle\mathbf{k}\rangle \theta$ ，youngster jóŋ〈k \langle stə（data from LPD3）
－\Rightarrow the result is not an affricate
－occurs only before unstressed vowel and word finally，not before a stressed vowel：eg ensure $1 \mathrm{n}^{*}\langle\mathrm{t}\rangle$ Jo¿， incest ín＊〈t＞sest，confess kən＊〈t＞fés
－\Rightarrow the process is not fortition

－fortition of fricative to affricate？
－answer á：n $\langle\mathbf{t}\rangle$ sə，censor sén $\langle\mathbf{t}\rangle$ sə，prince prín $\langle\mathbf{t}\rangle$ s
－amphora ám $\langle\mathbf{p}\rangle$ fərə，Samson sám $\langle\mathbf{p}\rangle$ sən，infant ín $\langle\mathbf{t}\rangle$ fənt， anthem án $\langle\mathbf{t}\rangle$ Өəm，ninth nájn $\langle\mathrm{t}\rangle \theta$ ，warmth wo：m $\langle\mathrm{p}\rangle \theta$ ， length lév $\langle\mathbf{k}\rangle \theta$ ，youngster jóŋ〈k \langle stə（data from LPD3）
－\Rightarrow the result is not an affricate
－occurs only before unstressed vowel and word finally，not before a stressed vowel：eg ensure in＊$\langle\mathbf{t}\rangle$ Jo：， incest ín＊〈t＞sest，confess kən＊〈t＞fés
－\Rightarrow the process is not fortition
－so what is happening here？is an extra skeletal slot inserted？

minimal pairs

- are loud lawd and land land a minimal pair? no

minimal pairs

- are loud lawd and land land a minimal pair? no
- are loud lawd and laid Iejd a minimal pair? yes

minimal pairs

- are loud lawd and land land a minimal pair? no
- are loud lawd and laid Iejd a minimal pair? yes
- are loud lawd and lad lad a minimal pair? yes

minimal pairs

- are loud lawd and land land a minimal pair? no
- are loud lawd and laid Iejd a minimal pair? yes
- are loud lawd and lad lad a minimal pair? yes
- this follows from the idea that aw and εj are one segment

minimal pairs

- are loud lawd and land land a minimal pair? no
- are loud lawd and laid Iعjd a minimal pair? yes
- are loud lawd and lad lad a minimal pair? yes
- this follows from the idea that aw and εj are one segment
- but aw and ε j take up two skeletal slots

minimal pairs

- are loud lawd and land land a minimal pair? no
- are loud lawd and laid Iejd a minimal pair? yes
- are loud lawd and lad lad a minimal pair? yes
- this follows from the idea that aw and εj are one segment
- but aw and εj take up two skeletal slots
- so what exactly are we comparing in a minimal pair?

minimal pairs

- are loud lawd and land land a minimal pair? no
- are loud lawd and laid Iejd a minimal pair? yes
- are loud lawd and lad lad a minimal pair? yes
- this follows from the idea that aw and εj are one segment
- but aw and εj take up two skeletal slots
- so what exactly are we comparing in a minimal pair?
- do we give the same answers to the first three questions if English was a language with no writing and unknown history?

minimal pairs

- are loud lawd and land land a minimal pair? no
- are loud lawd and laid Iejd a minimal pair? yes
- are loud lawd and lad lad a minimal pair? yes
- this follows from the idea that aw and εj are one segment
- but aw and εj take up two skeletal slots
- so what exactly are we comparing in a minimal pair?
- do we give the same answers to the first three questions if English was a language with no writing and unknown history?
similar problems

minimal pairs

- are loud lawd and land land a minimal pair? no
- are loud lawd and laid Iejd a minimal pair? yes
- are loud lawd and lad lad a minimal pair? yes
- this follows from the idea that aw and εj are one segment
- but aw and εj take up two skeletal slots
- so what exactly are we comparing in a minimal pair?
- do we give the same answers to the first three questions if English was a language with no writing and unknown history?
similar problems
- are tip-trip, tip-chip, trip-chip minimal pairs?

minimal pairs

- are loud lawd and land land a minimal pair? no
- are loud lawd and laid Iejd a minimal pair? yes
- are loud lawd and lad lad a minimal pair? yes
- this follows from the idea that aw and εj are one segment
- but aw and εj take up two skeletal slots
- so what exactly are we comparing in a minimal pair?
- do we give the same answers to the first three questions if English was a language with no writing and unknown history?
similar problems
- are tip-trip, tip-chip, trip-chip minimal pairs?
- are print prınt and prince prınts a minimal pair?

it is not consistent to say

but $\left.\begin{array}{lll}{\left[\begin{array}{lll}0 & 1\end{array}\right]} & {\left[\begin{array}{lll}N & a & w\end{array}\right]} & {\left[\begin{array}{ll}0 & d\end{array}\right]} \\ 0 & 1\end{array}\right]\left[\begin{array}{lll}{\left[\begin{array}{ll}N & a\end{array}\right]} \\ {\left[\begin{array}{ll}0 & d\end{array}\right]}\end{array}\right.$ are a minimal pair

another problem with diphthongs

- is now naw CVV or CVC?

another problem with diphthongs

- is now naw CVV or CVC?

another problem with diphthongs

- is now naw CVV or CVC?

another problem with diphthongs

- is now naw CVV or CVC?
- standard GP:
i. O N
ii. $\mathrm{O} \quad \mathrm{N} \quad \mathrm{N}$

or

- in case (i), in what sense is the offglide vocalic?

ceterum censeo: diphthongal offglides are consonantal

- ə-epenthesis: feel $f_{i j}\langle\partial\rangle$ I, fail f $\varepsilon j\langle\partial\rangle$ I, file faj $\langle\partial\rangle$ I, foil foj $\langle\partial\rangle$ I, hour $\mathrm{aw}\langle\boldsymbol{\partial}\rangle(\mathrm{r})$: the diphthongal offglides are consonants

ceterum censeo: diphthongal offglides are consonantal

- ə-epenthesis: feel fij $\langle\partial\rangle$ I, fail f $\varepsilon j\langle\partial\rangle$ I, file faj $\langle\partial\rangle$ I, foil foj $\langle\partial\rangle$ I, hour aw $\langle\partial\rangle(r)$: the diphthongal offglides are consonants
- NZ Acrolect flapping: factor faktə, faster fastə, Fanta fantə, fighter fajtə, pouter pawtə, farter fa«tə vs fatter farə: only after vowel, so j w : are consonants

ceterum censeo: diphthongal offglides are consonantal

- ə-epenthesis: feel fij $\langle\partial\rangle$ I, fail $f_{\varepsilon j}\langle\partial\rangle$ I, file faj $\langle\partial\rangle$ I, foil foj $\langle\partial\rangle$ I, hour aw $\langle\partial\rangle(\mathrm{r})$: the diphthongal offglides are consonants
- NZ Acrolect flapping: factor faktə, faster fastə, Fanta fantə, fighter fajtə, pouter pawtə, farter fa«tə vs fatter farə: only after vowel, so j w : are consonants
 (eg Ewok, kiwi, Awacs, Tewa, Taiwan), tw/əw/aw+j (eg alleluia, Kikuyu, cocoyam, yoyo): no geminate consonants

ceterum censeo: diphthongal offglides are consonantal

- ə-epenthesis: feel fij $\langle\partial\rangle$ I, fail $f \varepsilon j\langle\partial\rangle$ I, file faj $\langle\partial\rangle$ I, foil foj $\langle\partial\rangle$ I, hour $\operatorname{aw}\langle\partial\rangle(r)$: the diphthongal offglides are consonants
- NZ Acrolect flapping: factor faktə, faster fastə, Fanta fantə, fighter fajtə, pouter pawtə, farter fa:tə vs fatter farə: only after vowel, so j w : are consonants
- ${ }_{1 j} / \varepsilon j / a j / o j+j, *_{t w / \partial w / a w+w, ~ b u t ~ i j / \varepsilon j / a j / o j+w ~}^{\text {j }}$ (eg Ewok, kiwi, Awacs, Tewa, Taiwan), tw/əw/aw+j (eg alleluia, Kikuyu, cocoyam, yoyo): no geminate consonants
- no glide after checked vowel, only after long :j (eg sawyer so:jə), :w (eg narwhal na:wal) and unstressed vowel əj (eg Karayan kárəjan) and əw (eg Ottawa ótəwə): checked vowel+glide = "diphthong"

ceterum censeo: diphthongal offglides are consonantal

- ə-epenthesis: feel fij $\langle\partial\rangle$ I, fail f $\varepsilon j\langle\partial\rangle$ I, file faj $\langle\partial\rangle$ I, foil foj $\langle\partial\rangle$ I, hour $\operatorname{aw}\langle\partial\rangle(r)$: the diphthongal offglides are consonants
- NZ Acrolect flapping: factor faktə, faster fastə, Fanta fantə, fighter fajtə, pouter pawtə, farter fa:tə vs fatter farə: only after vowel, so j w : are consonants
- ${ }_{1 j} / \varepsilon j / a j / o j+j, *_{t w / \partial w / a w+w, ~ b u t ~ i j / \varepsilon j / a j / o j+w ~}^{\text {j }}$ (eg Ewok, kiwi, Awacs, Tewa, Taiwan), tw/əw/aw+j (eg alleluia, Kikuyu, cocoyam, yoyo): no geminate consonants
- no glide after checked vowel, only after long :j (eg sawyer so:jə), :w (eg narwhal na:wal) and unstressed vowel əj (eg Karayan kárəjan) and əw (eg Ottawa ótəwə): checked vowel+glide = "diphthong"
- unstressed vowels: only 1 ә ut and ij əw uw (eg happy, motto, value)

thanks to

- you all
- Faith Chiu
- UCL
- NKFI \#119863

