BBN-ANG-243 Advanced Phonolosy: Phonological Analysis

1. Introduction

Kiss Zoltán / Starcevic Attila / Szigetvári Péter / Törkenczy Miklós Dept of English Linsuistics, Eötvös Loránd University
(1) Where you are
year 1: BBN-ANG-141 Foundations of phonology lecture 45mins/week, 2 credits
\checkmark THIS IS SOMETHING YOU HAVE ALREADY DONE
year 2: core phonology courses
a. BBN-ANG-241 Phonology lecture, 45 mins/week, 2 credits
b. BBN-ANG-242 Phonology seminar (for major students only) 90 min/week, 3cred
\checkmark YOU HAVE ALREADY DONE THESE TOO
year 3: BBN-ANG-243 Advanced phonology lecture (for students specializing in English only), 90
mins/week, 3 credits
THIS IS WHERE YOU ARE NOW!

- web: http://seas.elte.hu/w/!courses/analysis/start
- assessment: written examination
- no-risk, non-compulsory Preliminary Test
fill-in+multiple choice (80 Qs, fail: 50\%)
15 fill-in Qs <youmust register in advance>
(2) What we assume you already know
- how to characterise speech sounds in terms of articulatory features (phonetics)
- the difference between phonetics (physical sound properties, gradual) and phonology (sound pattern, behaviour, categorical)
- difference in status between distinctive and redundant features (distribution, phoneme, allophone, contrast)
- Ioads of distributional facts about the English sound pattern (rules of E. phonology)
(3) What the course is about: phonolosical analysis
(3.1) Patterns

PATTERN TYPE

i. Allophonic patterns
ii. Morpho-phonolosical patterns
iii. Phonotactic patterns

DESCRIBED/EXPRESSED BY

Allophonic phonological rules: they predict non-contrastive features of sound
e.g. aspiration [p] [ph]

Morpho-phonological rules: they state generalisations about alternations: they predict the phonological form of allomorphs (alternants) and state under what conditions each occurs. e.g. regular past allomorphy $\{/ \mathrm{t} /$, /d/, /Id/\}

Phonotactic rules: they state what a phonologically possible word is, i.e. how segments can combine into words
e.g. */fpot/ but /spot/
(3.2) Levels of representation \& mapping

Phonological analysis assumes that the surface patterns/regularities are captured by
a. an abstract representation which encodes the information necessary for capturing them (the phonological/underlying representation)
b. a set of rules that derive the surface/phonetic representation from this abstract representation
phonological/underlying representation (UR) \rightarrow phonetic/surface representation (SR)
(3.3) The relationship between the SR and the UR informally expressed: the ' $A S$ IF assumption

If a unit X of the phonetic/surface representation 'behaves like' the unit Y , then X and Y are the same phonologically, , i.e. they are represented in the same way in UR.

Phonological relationships can be read off the UR and regularities are expressed by phonological rules
(4) Phonolosical analysis: the task is to determine (i) the UR and (ii) the mapping (the rules)
(5) The non-uniqueness of phonolosical analysis

More than one analysis of the same data is possible - depending on the general theoretical assumptions we make (ideally, it is possible to argue that one of is them is the optimal one)
(6) Simple (and sad) example: [I] and [\dagger]
(6.1) Complementary distribution and contrast: velarisation is non-contrastive

phonetic | file |
| :---: |
| [fajt] |

(6.2) Derivation:
(a) /I/ \rightarrow [+velarisation] / _ $\{\mathrm{C} \neq \mathrm{j}, \|\}$
or (b) / H / \rightarrow [-velarisation $] / _\{\mathrm{V}, \mathrm{j}\}$
(a) phonetic
phonological

[fajł]	[lajf]
/fajl/	/lajf/

(b) phonetic
phonological

[t] [I] surface
underlying
(6.3) Argumentation: Which is the better analysis: (a) or (b)?

- Are there any facts that are incompatible with one of the analyses?
- Are there any facts that are better explained by one analysis than the other?
- distributional facts?
\circ phonetic facts (phonetic motivation)?
(7) Complex (and happier) example: [n$]$ or How many underlying nasals are there in English?
(7.1) Phonemics/taxonomic phonolosy: "once a phoneme always a phoneme"
if two sounds contrast in some environment, their difference should always be assumed to be distinctive: they belong to different phonemes. [s nn] vs. [s s y$] \Rightarrow / \mathrm{n} / \mathrm{vs} . / \mathrm{y} / \quad 3$ UR nasals: $/ \mathrm{m} / \mathrm{l} / \mathrm{n} /, / \mathrm{n} /$
(7.2) Closer look: distribution
(7.2.1) Limited contrast
contrast with other nasals

i. morpheme-initially	\#	map	nap	*[yap]	NO
ii. morpheme-medially	_V	Emmy	any	* [عضij]	NO
	C	limp	lint	[IInk]	NO
iii. morpheme-finally	- ${ }^{\text {- }}$	some	sun	sung [$\mathrm{S} \wedge$]	YES
!! [sijə] = [sin\#ə]		!! * [lint $]$!! [bayd	

（7．2．2）＇lonely＇［ŋ］vs．［ng］：complementary distribution
（a）
［口］
［ g g ］
［ bk ］
morpheme finally morpheme medially

```
sing [sIn]
    -
anger [angə]
```

［gg］never before a morpheme boundary singer［\＃sin\＃ə\＃］
［〕］only before a morpheme boundary finger［\＃fingə\＃］
exceptions：i．longer，stronger，younger，longest，strongest，youngest
ii．hangar，－ingham（！gingham）
［＇long \＃əst］ ［＇nっtinəm］
sink［sink］
anchor［aŋkə］

```
*[#sing #ә#]
*[#finə#]
```

（b）［n］－［nd］money－Monday ten－tend

$$
[\mathrm{s}]-[\mathrm{st}] \text { soul - stole miss - mist }
$$

(7.2.3) pre-[口] vowels: only short

VC		V :	V
	$\mathrm{C}=[\mathrm{n}]$	fine [fajn]	fin [fin]
	$\mathrm{C}=[\mathrm{p}]$	*[sajn]	sing [sin]

OTHER FACTS/GENERALISATIONS

(7.2.4) nasal+ plosive clusters

[nasal][stop]\#		p	t	k	b	d	g
	m	limp	-	-	-	-	-
n	-	tent	-	-	lend	-	
	η	-	-	link	-	-	-

i. $\quad \mathrm{C}_{[\text {nasal] }} \mathrm{C}_{[\text {stop] }]}$ clusters must be homorganic within the morpheme.
ii. Non-coronal voiced stops cannot occur after nasals morpheme-finally
(7.2.5) onset clusters and sonority

play	try	twist
${ }^{*}$ [lp j]	${ }^{*}[$ [rtaj]	${ }^{*}$ [wtist]

Sonority Hierarchy: stops, affricates < fricatives < nasals < l < $<$ glides < vowels
Onset clusters must have rising sonority
(! regular exception: \#sC spot, stop, ski)
(7.2.6) vowels before morpheme-final consonant clusters

coronal cluster	mount [mawnt] field [fijld]	sent [sent] held [held]
non-coronal cluster	${ }^{*}[\varepsilon j \mathrm{j} k]$	tank [tank]
	${ }^{*}[\mathrm{hijlp}]$	help [help]

Only phonologically short vowels can occur before morpheme-final non-coronal clusters

(7.3) AS IF

Observation [ŋ] behaves as if it were a non-coronal cluster, specifically a cluster of a nasal+velar stop (ng)

Analysis 'AS IF assumption \rightarrow phonologically it $/ S / \mathrm{ng} /=$ There is no UR / $\mathrm{n} /$, only $/ \mathrm{m} /$ and $/ \mathrm{n} / \mathrm{in}$ English.
(7.4) Costs and benefits
(7.4.1) Benefits: What does this analysis buy us?
(a) explains why 'lonely' $[\mathrm{n}]$ \& [ng] do not contrast
(b) explains why [n] does not occur morpheme-initially
(c) explains why pre-[口] Vs are short
(d) explains why the $/ \mathrm{g} /$ of $/ \mathrm{ng} /$ does not appear phonetically
<they are the same in UR>
<\#nasal+C cluster=sonority violation>
<only short Vs occur before non-cor. clusters> <no voiced stops after nasals _\# in general>
(e) system economy: reduces the number of UR segments (only 2 nasals)
(7.4.2) Costs: What does this analysis cost us?
(a) 'abstractness'

The presence of surface contrast does not necessarily indicate identical underlying contrast: the 'once a phoneme, always a phoneme' principle is given up
(b) complexity of mapping more complex rules + rule ordering
(8) Implementation of the 'AS IF assumption: Generative Phonolosy
(a) 'behaviour' (= regularities, patterns) are expressed by mapping = derivation:
the phonetic (surface) representation is derived from the phonological (underlying) representation by a set of phonological rules which are sequentially ordered. Phonological rules change representations by adding predictable properties to the representation (input) to which they apply.
(b) EXAMPLE: derivation of surface/phonetic [y] from underlying/phonological /ng/

```
phonological rules: 1. nasal assimilation: [nasal] }->\mathrm{ [a place] / _ [C, a place]
    2. post-nasal g-deletion g->\varnothing/[nasal]_#
```

ordering: 1. before 2.
derivation:
underlying/phonological representation

1. nasal assimilation
2. post-nasal g-deletion
surface/phonetic representation

l\#sing\#/	l\#sing\#ə\#/	l\#fingə\#/
\#sing\#	\#sing\#ə\#	\#fingə\#
\#sin\#	\#sin\#ə\#	-

[sıj] [sıjə]
[finge]
(c) generative phonological analysis aims to 'explain' the pattern by
(i) identifying what the phonological (underlying) representation is
(ii) identifying what the phonological rules are
(iii) showing how the rules apply to derive the phonetic (surface) representation from the underlying one (ordering)
(9) Bad ideas: when 'explanations' do not work
(9.1) /I/ $\rightarrow[\dagger] /$ _ C where $\mathrm{C} \neq \mathrm{j}$ ['dettə] but ['valjuw], ['silij]
(9.2) Problem: why is [j] the only consonant before which /// is clear?
(9.3) Idea 1: because phonologically/underlyingly it is a vowel NO GOOD
© a unit, *an unit
(9.4) Idea 2: the real rule is different: /// is clear before vowels and glides, but dark before a non-glide C

NO GOOD
© ['o:twejz]
(9.5) Explanation must lie elsewhere

Silver lining: at least we have seen the problem and excluded two possible explanations!

