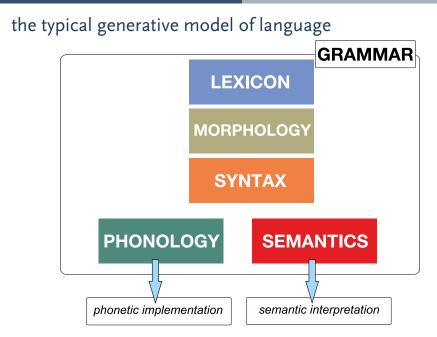
BBN–ANG–243 Phonological analysis Laryngeal contrast in English consonants

Zoltán G. Kiss, Attila Starčević, Péter Szigetvári, Miklós Törkenczy


Dept. of English Linguistics, Eötvös Loránd University

lecture outline

- contrast among English obstruents consonants
- laryngeal ("voicing") contrast
- phonological modelling and phonetic implementation of the contrast
- when contrast disappears: neutralization

the generative model of language

phonology is one of the modules of linguistic competence ("grammar")

units in the mental lexicon

- the lexicon contains any information that needs to be memorized (no rules for them)
- e.g., it stores a list of the words, morphemes of a language
- what do you know when you "know" a word?
- ▶ 1. the elements that the word is built up from
- 2. their meaning
- these building blocks or segments are called phonemes
- the smallest units that can distinguish words from one another, responsible for the contrast
- words are represented in the lexicon as strings of phonemes = underlying representation (UR)

tasks of phonology

- ► it defines the phoneme inventory of a language
- it maps between phonemes and their surface realizations (allophones)
- ► it defines the **phonological rules** that are used to derive surface realizations when there are more than one possible realizations

phonetics?

- not part of grammar
- implements the surface representations in speech (= the output of phonology)
- "translates" the output of phonology to actual speech gestures

what is it exactly that makes the difference between / \int / and /s/, etc, possible?

features

- ▶ $/\int$ and /s are phonemes because e.g., <u>shine</u> \iff <u>sign</u>
- we can explicitly express why they contrast with the distinctive features they contain

	/ s /	\iff	/s/
voicing:	[-voice]		[-voice]
nasality:	[-nasal]		[—nasal]
manner:	[-stop]		[-stop]
place:	[+palatal]		[–palatal]

features

- a phoneme = a sum of these features
- e.g., $/\int / =$ voiceless + oral + palatal + fricative
- ► features are usually defined based on articulation (phonetics)
- they can be thought of as the instructions the brain sends to the speech organs to implement sounds

phonetic implementation of distinctive features

you want to say the word <u>shine</u>:

 $\frac{Phonological representation}{[-voice]} / \int / = \begin{cases} [-nasal] \\ [+palatal] \\ [-stop] \end{cases}$

Phonetic implementation 'do not vibrate vocal folds' + 'do not lower the velum' + 'raise tongue to hard palate' + 'do not create complete closure'

consonant contrasts in English

the consonant inventory (contrastive consonants)

		Bil.	Lab-den.	Dental	Alveolar	Palatal	Velar	Glottal
	Р	p b			$\mathbf{t} \mid \mathbf{d}$		k g	
0	F		f v	θ ð	s z	∫ 3		
	А					मु क्र		
	Ν	m			n		դ	
S	L				1	r		
	G	w				j		h

Bil. = bilabial, Lab-den. = labio-dental

P = stop/plosive, F = fricative, A = affricate, N = nasal, L = liquid, G = glide

O = obstruent, S = sonorant

| = left of line: "voiceless", right of line: "voiced"

obstruent contrasts

- ▶ place contrast: e.g., /t/ vs. /p/: tin-pin; /t/ vs. /k/: tan-can
- ► manner contrast: e.g., /t/ vs. /s/: tin-sin
- ► "voicing" contrast: e.g., /t/ vs. /d/: time-dime

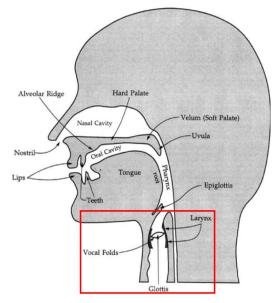
"voicing" contrast in obstruents

OBSTRUENTS

STOPS		FRICATIVES		
/t/	- /d/	/s/	- /z/	
tie	– d ie	sip	– z ip	
writer	– ri d er	mi ss le	– mi zz le	
bea t	– bea d	bus	– bu zz	
'voiceless'	'voiced'	'voiceless'	'voiced'	

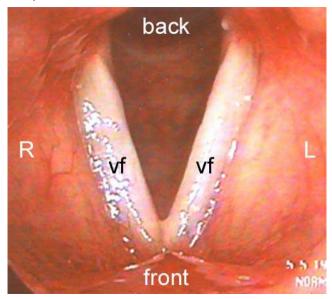
laryngeal contrast in obstruents

- the phonological contrast of "voicing" is signalled (= cued) by a complex of features
- there are several correlates of this contrast = there are many "concomitant" features for the contrast
- vocal fold vibration is only one of them

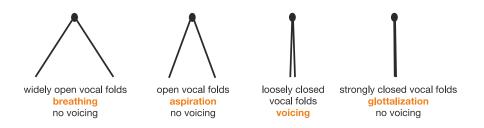

laryngeal contrast in obstruents

- let's call the phonological contrast between tie-die, writer-rider, bus-buzz, etc. laryngeal contrast
- voicing is a narrowly used phonetic term: vocal fold vibration (also called: phonation)

some phonetic correlates of laryngeal contrast in obstruents


- voicing/phonation: vocal fold vibration
- Voice Onset Time (VOT)
- relative length of preceding vowel
- glottalization
- ► release noise/burst: intensity & length

larynx: vocal folds + glottis



z. g. kiss (elte|delg)

vocal folds: periodic vibration

states of the vocal folds

cross-section of the larynx

vocal fold vibration: the Bernoulli effect

the aerodynamics of voicing: steps of vocal fold vibration

vocal fold vibration happens because of **air pressure changes** (aerodynamic reasons):

- 1. vocal folds loosely close
- 2. air pressure increases below vocal folds
- 3. air pressure blows vocal folds apart (glottis opens)
- 4. speed of air particles increases through narrow glottis
- 5. air pressure **decreases** below/within vocal folds \Rightarrow vocal folds sucked together (**Bernoulli effect**)
- 6. vocal folds are closed again, a cycle like this repeats itself approx. 100–300 times/second
- 7. the cycles last until the state of glottis changes (e.g., opens to produce a voiceless sound)

 phonation can start and can continue when air pressure is higher below the vocal folds than above it

z. g. kiss (elte|delg)

types of voicing & devoicing based on aerodynamics

- spontaneous ("modal") voicing: open oral cavity this helps to start and maintain voicing because air pressure will be low in the mouth but high below vocal folds ⇒ vowels, sonorants
- passive devoicing: closure/constriction in mouth this creates high air pressure above vocal folds, which inhibits vocal fold vibration ⇒ obstruents

voicing in obstruents

- obstruents easily get devoiced
- but there exist voiced obstruents, how?
- passive voicing
- active voicing

passive voicing

- when obstruents are between two vowels or sonorants, voicing from the preceding vowel/sonorant continues throughout the obstruent
- this is what we call passive voicing

voicing

passive voicing

- English "voiced" obstruents are passively voiced
- ► examples: *ri<u>d</u>er*,

ban**d**it, ra**b**id, gam**b**le, begin, English, ga**dg**et, nostalgia, fu**zz**γ, palsy, Ma**gd**a, exam /ıgzám/...

active voicing

- additional, "extra" voicing articulation-strategies are used to delay devoicing in obstruents
- e.g., lower the larynx, enlarge the oral cavity
- Hungarian, French, Russian, etc. obstruents are like this: actively voiced

active devoicing

- between vowels/sonorants, obstruents are passively voiced
- to produce voiceless obstruents in such positions, extra articulatory effort is needed
- this is called active devoicing
- examples from English: *city*, *lucky*, *tempo*, etc.

types of phonetic voicing

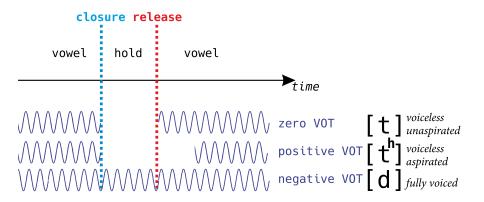
Туре	Affected sounds
spontaneous voicing	vowels, sonorant consonants
passive devoicing	obstruents
passive voicing	obstruents between Vs/son. (English, etc.)
active voicing	obstruents (Hungarian, etc.)
active devoicing	voiceless obstruents between Vs/son.

some consequences of voicing types

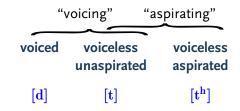
- vowels and sonorants are usually only voiced (no voiceless pair)
- some languages only have voiceless obstruents ("voiceless obstruents are unmarked")
- if a language has a voiced obstruent, it must also have a voiceless obstruent

some consequences of voicing types

- if an obstruent is passively voiced (as in English), its voicing depends on its environment
 - passively voiced obstruents are only fully voiced between vowels/sonorants
 - elsewhere they are usually partially or fully devoiced, e.g.:
 - ▶ word-initial position: *back*, *demon*, *game*, *juice*...
 - word-final position: rob, lead, vague, bridge...
 - next to another obstruent: anecdote
- passively voiced obstruents are not predicted to cause regressive voicing assimilation


representational consequences

- Hungarian obstruents contain the feature [±voice] in their underlying representation
- English obstruents do not contain the feature [±voice] in their underlying representation
- so what feature makes the contrast possible between English obstruents? for example: <u>tip</u> - <u>dip</u>?
- VOT


Voice Onset Time, VOT

- voicing of stops can be characterized by the timing between the release and the beginning ("onset") of voicing of the next vowel/approximant
- we call this timing relationship Voice Onset Time (VOT)

three Voice Onset Time options

voicing and aspirating languages

Hawaiian[t]Hungarian[d](t)EnglishtThai[d](t)Cl. Greek: $\beta \dot{\alpha} \varsigma / \mathbf{b} \dot{\mathbf{s}} / - \pi \dot{\alpha} \varsigma / \mathbf{p} \dot{\mathbf{s}} / - \varphi \dot{\alpha} \varsigma / \mathbf{p}^{h} \dot{\mathbf{s}} /$

voicing and aspirating languages

voicing (zero VOT \Leftrightarrow -VOT) languages

most Romance and Slavic languages (Spanish, Italian, French, Russian, Polish, Slovak, etc.) but also Dutch, Yiddish, Scottish English, and Hungarian

aspirating (+VOT ⇔ zero VOT) languages

most Germanic (English, German, Danish, Icelandic, Norwegian, Swedish, etc.) but also some Turkic languages

voicing and aspirating languages

voicing (zero VOT \Leftrightarrow -VOT) languages: [\pm voice]

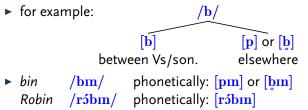
- difference between obstruents is due to voicing - e.g., /p/= voiceless, [-voice]; /b/= voiced, [+voice]

aspirating (+VOT \Leftrightarrow zero VOT) languages: [\pm fortis]

- difference between obstruents is due to **fortisness**

-e.g., /p/ = fortis, [+fortis]; /b/ = lenis, [-fortis]

fortis vs. lenis obstruents


Fortis [+fortis]	Lenis [-fortis]
never voiced	have passive voicing, only voiced
	between Vs/sonorants/lenis obst.'s
can be aspirated	never aspirated
can shorten the preceding vowel	never shorten preceding vowel
("Pre-Fortis Clipping")	
can be glottalized	can never be glottalized

fortis vs. lenis obstruent contrast in English

English obstruent phonemes

 $\begin{array}{c|c} Stops & Affr. & Fricatives \\ Fortis [+fortis] & /p t k / & /tf / & /f \theta s \int / \\ Lenis [-fortis] & /b d g / & /ds / & /v \delta z 3 / \\ \end{array}$

lenis phonemes have two allophones: (partially) voiceless and voiced, the voiced allophone is the most limited

fortis phonemes have various allophones (aspirated, unaspirated, glottalized)

phonetic implementation of [\pm fortis] in English example: <u>*tip* – *dip*</u>:

Phonological representation/t/ =[+fortis][-nasal][+alveolar][+stop]

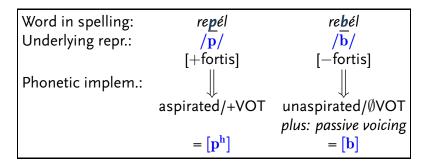
$$/d/ = \begin{cases} [-fortis] \\ [-nasal] \\ [+alveolar] \\ [+stop] \end{cases}$$

'don't do anything/ØVOT' +
'don't lower the velum' +
'raise tongue to alveolar ridge' +
'create complete closure'
= [d] = [t]

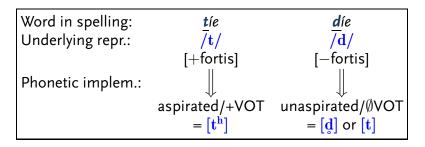
phonetic implementation of [\pm voice] in Hungarian example: *tél* 'winter' – *dél* 'noon':

Phonological representation		
/t/ =	[-voice] [-nasal] [+alveolar] [+stop]	

$$/d/ = \begin{cases} [+voice] \\ [-nasal] \\ [+alveolar] \\ [+stop] \end{cases}$$

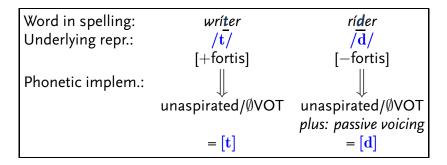

Phonetic implementation 'don't vibrate vocal folds/ØVOT' + 'do'nt lower the velum' + 'raise tongue to alveolar ridge' + 'create complete closure' = [t]

'vibrate vocal folds/-VOT +
'don't lower the velum' +
'raise tongue to alveolar ridge' +
'create complete closure'
= [d]


laryngeal contrast of English **stops** in various positions

- as we saw, there can be various phonetic implementations of [+fortis] and [-fortis]
- they depend on the position of the obstruent
 - 1. between sonorants, before a stressed vowel: repél rebél
 - word-initial, before a stressed or unstressed vowel: tie die, polite – Bolivia
 - 3. between sonorants, before an unstressed vowel: writer rider

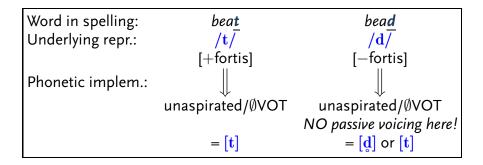
1. between Vs/sonorants, before a stressed vowel



- on the surface, both aspiration and phonetic voicing make the contrast possible, we can call it a **strong** position for the obstruent contrast 2. word-initial, before vowel (stressed or unstressed)

- only aspiration is active in this position for the contrast on the surface

3. between sonorants, before an unstressed vowel



- only voicing is active in this position for the contrast on the surface
- note: 1. fortis stops may be weakly aspirated in this position, too 2. length of stops is relatively short here, and voicing may continue throughout the stop: /t/ and /d/ may become a flap [r] in American English, but not /p/-/b/ or /k/-/g/: rápid - rábid still contrast

absolute word final position: beat - bead

- in this position, voicing is difficult to maintain
- ► since nothing follows the stop, aspiration is also impossible

no contrast in *beat – bead*?

- has English given up contrast in word-final position? = neutralization
- or maybe there are features other than aspiration or voicing that get activated here to maintain the contrast...

neutralization: the beer goggle effect

neutralization

The disappearance of contrast under a given condition.

= The local suspension of a phonological opposition between two or more contrastive sound segments; only one segment can appear in that position (but not its contrastive counterpart(s)).

neutralization: the beer goggle effect

- opposition: the attractiveness of people is perceived differently
- condition: being drunk
- output: the difference in attractiveness disappears (all people are perceived as attractive)

neutralization example: vowel reduction

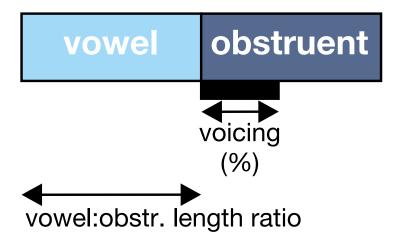
 a wide range of vowels can appear in a stressed syllable but in unstressed syllables, vowel contrast is reduced to a handful of vowels (primarily the schwa)

sent é ntial	\sim	sént <mark>e</mark> nce	3	\sim ə
syst <mark>é</mark> mic	\sim	sýst e m	3	\sim ə
mor <mark>á</mark> lity	\sim	mór <mark>a</mark> l	a	\sim ə
symb <mark>ó</mark> lic	\sim	sýmb o l	С	\sim ə
at <mark>ó</mark> mic	\sim	át o m	С	\sim ə
harm ó nious	\sim	hárm o ny	əw	\sim ə
myst <mark>é</mark> rious	\sim	mýst e ry	ľ	\sim ə
dr á ma	\sim	dr a mátic	ar	\sim ə
sulph ú rious	\sim	súlph u r	jʉː	\sim ə

▶ opposition: full vowels, condition: unstressed syllable, output: /ə/

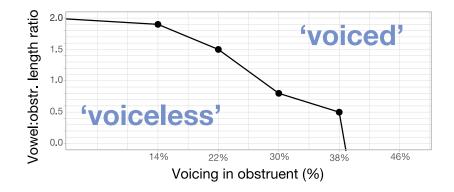
laryngeal neutralization for word-final obstruents?

- ▶ beat bead, back bag, loose lose, leaf leave, etc.
- opposition: laryngeal contrast of obstruents, condition: word-final position, output: only voiceless-unaspirated obstruents
- based on this, beat and bead are supposed to be pronounced the same way:
- BUT this does not seem to be the case!


"redundant" features to the help

- correlates of laryngeal contrast so far: voicing and aspiration
 but they are not active in word-final position
- however, there are other correlates of the laryngeal contrast
- they do not seem to play a role in other positions (e.g., word-medially), they are "redundant"
- but they seem to emerge more saliently when contrast is in danger (as in word-final position):
 - relative length of preceding vowel
 - glottalization
 - other features: release noise, articulatory strength/effort/force

relative length of preceding vowel

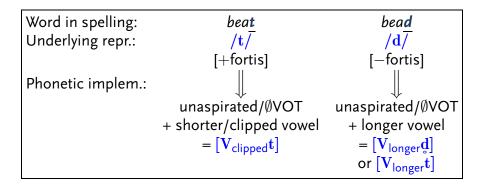

- experimental evidence: relative length of vowel to the length of the obstruent is an important factor for categorizing the obstruent as 'fortis/voiceless' or 'lenis/voiced', especially in word-final position
- ▶ generally: short vowel + longer obstr. ⇒ 'fortis/voiceless' long vowel + shorter obstr. ⇒ 'lenis/voiced'

experiments: manipulating voicing & length

vowel length

relation of voicing categorization and voicing amount+vowel length in word-final position

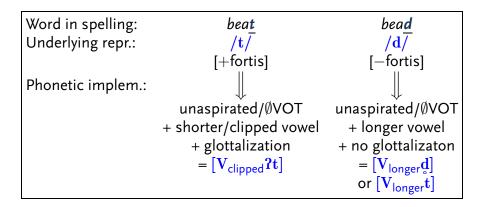
conclusions


- if there is little or no voicing in the obstruent, the preceding vowel has to be around twice as long as the obstruent for it to be categorized as 'lenis/voiced'
- if this vowel is not this long, the obstruent is categorized as 'fortis/voiceless' = Pre-Fortis Clipping

Pre-Fortis Clipping in English in word-final position

 in English vowels (+ sonorants) are significantly shorter (clipped) before fortis obstruents than before lenis obstruents, where they are significantly longer

Vowel (+ son.) is shorter	Vowel (+ son.) is longer
before fortis obstr.	before lenis obstr.
m <u>a</u> te	m <u>a</u> de
r <u>o</u> pe	r <u>o</u> be
wr <u>i</u> te	r <u>i</u> de
r <u>oo</u> t	r <u>u</u> de
с <u>а</u> р	c <u>a</u> b
sp <u>ea</u> k	sp <u>ee</u> d
l <u>oo</u> se	lose
l <u>ea</u> f	leave
f <mark>on</mark> t	f <u>on</u> d
d <mark>en</mark> se	d <u>en</u> s


contrast in beat – bead

pre-glottalization/glottal reinforcement

- glottal closure quickly closes down the voicing of the vowel, followed by the oral closure of the fortis stops & affricate
- happens word-finally or when they are followed by another consonant
- it only happens for the fortis consonants: mate [mɛjît] – made [mɛjt], seat [sɪjît] – seed [sɪjt]
- ▶ it is another indicator of the fortis lenis contrast!
- it happens where the contrast between fortis & lenis stops could potentially disappear (word-finally)
- note: glottalization may well be just a more salient/forceful version of pre-fortis clipping: the vowel is cut by glottal closure

contrast in beat – bead

summary

phonetic implementation of [+fortis] in stops

		Phonetic implementation	In which position?
[+fortis]	\implies	(strong) aspiration	word-initially
			or before a stressed vowel
	\implies	vowel clipping	word-finally
	\implies	glottalization	word-finally
	\implies	weak/no aspiration	word-medially
			before an unstressed vowel

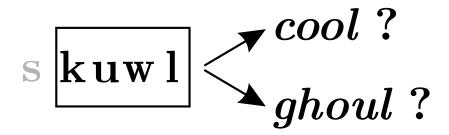
phonetic implementation of [-fortis] in stops			
		Phonetic implementation	In which position?
[-fortis]	\Rightarrow	voicing	between vowels/son.
	\implies	no aspiration, no voicing	elsewhere

fortis fricative + stop clusters

- so far we have not seen neutralization of the laryngeal contrast for either stops or fricatives
- fortis fricative + stop clusters:
 - /s/ + stop: <u>sp</u>eak, <u>sp</u>ort, <u>sp</u>ring, <u>st</u>éreo, <u>st</u>úpid, <u>st</u>ring, <u>sch</u>ool, <u>sch</u>eme, <u>sk</u>etch, discóver, displáy, <u>expl</u>áin...
 - $/\mathbf{f}/ + \text{stop: } ka \underline{ft} \acute{an}, \acute{a} \underline{ft} er$
 - ► /ʃ/ + stop: ge<u>st</u>ált
- the laryngeal contrast is completely neutralized in this position: only an unvoiced-unaspirated stop may occur here

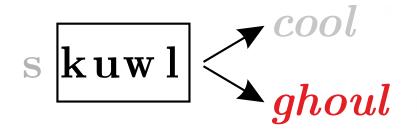
the traditional analysis: exception!

- spelling suggests that the stop in speak, discover, etc. is fortis, just like in peak, recover, etc.
- but then all stops after fortis fricatives and before a (stressed) vowel are exceptionally <u>unaspirated</u>


 Aspirated 	Not aspirated	
p éak	s p éak	
re <u>c</u> óver	dis <u>c</u> óver	
a <mark>tt</mark> áin	sus <u>t</u> áin	
má <u>tt</u> er	ás t er	
► why?		

syllable-based analysis

- 'fortis stops are only aspirated at the beginning of a syllable'
- so: /p/ in peak is aspirated but not in speak, and /k/ in re.co.ver is aspirated but not in di.sco.ver (. signals syllable boundary)
- problem: what is special about the syllable-initial position? why in only this "special" position can there be aspiration?
- problem: putting the fricative and the stop in the same syllable is questionable: a.fter, ka.ftan, ge.stalt...


perception of stops after fortis fricatives

- what do native speakers hear when the /s/ of school is deleted?

stops after /s/ are perceived as lenis

- what do native speakers hear when the /s/ of school is deleted?

alternative analysis: the stop is lenis, not fortis

- stops after fortis fricatives seem to be lenis and NOT fortis
- they are not aspirated because they are never aspirated
- they are not voiced either because they are only (passively) voiced between vowels/sonorants/other lenis obstruents but not next to fortis obstruents
- ► if transcription was following this phonological fact, then: <u>stop</u> = $/\underline{sd}p/$, $di\underline{sc}over = /d\underline{sg}dv\partial/$, etc.
- why don't we use this transcription then? probably because it would be very misleading for language learners coming from voicing languages...

/sbo:t/, /səsdéjn/, /ásbə:gəz/...

- sport, sustain, Asperger's...
- note Welsh spelling: <u>sbecto</u> 'spectacles', <u>sgyrt</u> 'skirt', <u>Sbaen</u> 'Spain', <u>sblasio</u> 'splash'...

laryngeal contrast of English fricatives/affricates

- similar analysis for fricatives/affricates
- realization of the laryngeal contrast depends on the position
- difference: aspiration (VOT) and glottalization do **not** play a role

correlates of laryngeal contrast of **fricatives/affricates**

- word-medial position, before vowels: absence/presence of voicing/phonation
- conféction convéction, defied divíde; míssle mízzle, rífle ríval, Confúcian – confúsion
- word-initial position: acoustic intensity is the main correlate of the contrast
- ► fortis fricatives/affricates: more intense; lenis: relatively less intense
- $\underbrace{sip \underline{z}ip, \ \underline{c}ellar \underline{Z}ellar, \ \underline{f}ain \underline{v}ein, \ \underline{f}ault \underline{v}ault, \ \underline{f}eel \underline{v}eal, \\ \underline{sh}eet / \underline{fijt} / \underline{g}ite / \underline{3ijt} /, \ \underline{thigh} / \theta \underline{aj} / \underline{th}y / \overline{\delta aj} /$
- ► absolute word-final position: duration & intensity is the main correlate
- ► leaf leave, bus buzz, race raise, ruche / ruw J / rouge / ruw 3 /, $teeth / tij\theta / teethe / tij\delta /$, loath loathe