Linguistic Theory/MA lecture The role of speech perception in sound patterns

Zoltán G. Kiss

Dept. of English Linguistics, ELTE

topic outline

- relationship between sound patterns and speech perception
- laryngeal/voicing contrast & neutralization
- traditional, syllable-based approach
- cue based approach: Licensing by Cue

compulsory text

Donca Steriade (MIT):

Phonetics in Phonology: The Case of Laryngeal Neutralization (1997)

terms

- syllable, syllabification (onset, nucleus, coda, rhyme)
- licensing of contrast
- neutralisation
- cue
- VOT

licensing: by cue or by prosody?

An example voicing neutralization pattern (e.g., Polish, Lithuanian, Slavic, Sanskrit)

- Obstruents are distinctively voiced or voiceless before vowels and consonantal sonorants.
- Obstruents are neutralized (devoiced) word finally.
- Obstruents are neutralized before any obstruent: they surface assimilated in voicing to the following obstruent.

licensing: by cue or by prosody?

The prosodic/syllable based analyses:

- a. The [voice] feature is unlicensed in the coda, licensed in onset.
- b. The [voice] feature is licensed in a segment by a following **tautosyllabic** sonorant.

licensing: by cue or by prosody?

An alternative view: licensing by cue

- one of the major cues to the distinction between voiced/voiceless obstruents is the voice onset time (VOT) value observable on a following segment
- different VOT values indicating different [voice] categories in the preceding obstruent – can be observed on a following vowel or sonorant but not on obstruents
- pre-obstruent obstruents necessarily lack at least this one bit of information about their laryngeal category
- word-finally: the VOT cue is missing (nothing follows)

licensing by cue: the gist

- absence of a major cue or articulatory difficulties in implementing it – represent the main factor responsible for voicing (and other) neutralization
- this analysis promises to explain the grammar of neutralization, by showing how independently known facts about the **perception** and **production** of speech interact with grammatical conditions to yield sound patterns

traditional generative model of grammar

traditional role of phonology and phonetics

- phonological component consists of various entities and rules/conditions (feature set, sonority sequencing conditions, aspiration rule, etc.) whose interaction determines which contrasts a language will have and where
- phonetic implementation component: laws that map phonological representations onto articulatory instructions, and laws that compute the acoustic and perceptual consequences of articulatory gestures
- downward arrow connecting phonology to phonetics = decision to have a contrast and have it in a specific position is taken in phonology
- phonology cannot be affected by external factors, i.e. by physical conditions under which the contrast will be implemented (articulation, perception)

phonetically-grounded phonology

- speakers possess knowledge of the relative ease with which different types of contrasts can be implemented
- e.g., /k/-/g/ contrast is more easily detectable in intervocalic position than in inter-obstruent position
- knowledge of this sort enters the grammar in the form of implementational constraints, there is now an upward arrow from phonetics into phonology, too
- interaction of these conditions with the rest of grammar determines whether the language maintains a given contrast in a given position

a brief example: Gujarati apical contrast

- ► alveolar /t/ and retroflex /t/ (/ata/) contrast between vowels: $/ata/ \neq /ata/$
- but the apical contrast is neutralized word-initially and after consonants:

/ta/ but */ta/ and /apta/ but */apta/

stylized spectrograms of Gujarati alveolar & retroflex stops

role of perception

- phonetic fact: only the V–C transitions differentiate /t/ and /t/; the C–V transitions are essentially identical in the two cases
- phonological fact 1: if a language neutralizes the contrast between alveolars and retroflexes, then it does so first in word-initial or post-consonantal position
- = contexts where the helpful V–C transitions are missing
- phonological fact 2: if a language allows the contrast between alveolars and retroflexes, it does it after vowels
- = contexts where the helpful V–C transitions are present
- perception-based hypothesis: in contexts where the retroflex-alveolar contrast is hard to perceive, it is categorically suppressed, because it would be difficult to implement there

prosodic approach fails

- no connection between the syllabic or word-position of the consonant and its ability to carry distinctive retroflexion
- these neutralized word initial or postconsonantal stops are all onsets but then so is the distinctively retroflex intervocalic stops!
- there is a directly observable connection between the distribution of cues to a contrast, the phonetic implementation fact, and the phonological distribution of the contrast

from phonetic fact to phonological constraint

- the phonetic fact: retroflex contrast is difficult perceive in non-V-to-C transitions
- from this we can establish a phonological constraint in the grammar of Gujerati: 'ban apical contrast in contexts lacking V-C transitions'

relative perceptibility

- a contrast is directly related to the relative perceptibility of that contrast in a given phonetic position
- certain positions are optimal for the contrast, others less so
- optimal: lot of quality cues
- a correlation between positions of poor perceptibility and sites of neutralization

perception cues to obstruent voicing in various positions

- after a V and before a sonorant: e.g. *abra, aba, apra, apa* cues: closure voicing, closure duration; V1 duration; F1 values in V1; burst duration and amplitude; VOT value; F0 and F1 values at the onset of voicing in V2
- word initially or after an obstruent and before a sonorant: e.g. bra, ba, pra, pa; and asbra, asba, aspra, aspa cues: closure voicing, closure duration (for post C obstruents only); burst duration and amplitude; VOT value; Fo and F1 values at the onset of voicing in the following V
- after V at end of the word: e.g. *ab*, *ap* cues: closure voicing, closure duration; V duration; F1 values in V ;
 burst duration and amplitude

perception cues to obstruent voicing in various positions

- 4. after V and before obstruent: e.g. *absa, apsa* cues: closure voicing, closure duration; V1 duration; F1 values in V1
- 5. between obstruents: e.g. *asbta, aspta* cues: closure voicing, closure duration
- 6. after an obstruent at the end of the word: e.g.: *asb*, *asp* cues: closure voicing, closure duration
- 7. before obstruent word initially: e.g.: *bsa, psa* cues: closure voicing, closure duration

ranking of positions based on cues

- as we go down the list of contexts (from 1. to 7.), the set of typically available cues to voicing progressively shrinks
- ▶ the positions where the identification of voicing categories emerges as the most difficult (4., 5., 6., & 7.) are in fact positions where such contrasts have seldom been documented
- the cases in 5., 6., 7. are highly significant: they involve obstruent clusters that are rather well attested, yet only one language – Khasi (India/Bangladesh) – is known to allow distinctively voiced obstruents in sequences like bsa
- cue-based approach: a single factor relative poverty of cues induces neutralization in all the contexts

ranking of positions based on cues

- Position 4, V_obstruent (absa): voicing of an obstruent can be identified more reliably due to the preceding V, and we can find more languages that maintain contrast here
- these languages do not preserve the voicing contrast in 5., 6., 7. but they do maintain it when the obstruent is either left or right adjacent to a vowel

ranking of positions based on cues

- Position 3, V_# (ab): is more favourable for the contrast than 4. bc. release burst here is possible
- in 4. V1O1O2V2, O2 is better/more strongly cued (a V is after it!) and so the categorization of O1 with respect to voice is likely to be influenced by that of O2
- related to this is the fact that voicing neutralization never occurs finally without also occurring in pre-obstruent position

cue-based voicing patterns

- the claim (again): there is a link between the relative likelihood of neutralization of a feature and the relative perceptibility of that feature in a given context
- voicing contrast will be maintained in some context as a direct function of the cues available there: all else equal, the better the cue package, the greater the likelihood of contrast preservation
- the sites of neutralization have no uniform characterization in terms of prosodic (esp. syllabic) organization
- no language maintains the voicing contrast in a less informative context, unless it also does so in the more informative contexts

patterns of voicing neutralization

(6) Patterns of [voice] neutralization (O = obstruent, R = sonorant, incl. vowel)

fewer cues <-----> more cues

	#_ O, O_#	R_O	R_#	_R	R_R
	e.g. bsa vs. psa	e.g. absa vs. apsa	e.g. ab vs. ap	e.g. ba vs. pa	e.g. aba vs. apa
Totontepec Mixe (Crawford 1964)	no voice contrast	no voice contrast	no voice contrast	no voice contrast	contrast
Lithuanian (Senn 1966)	no voice contrast	no voice contrast	no voice contrast	contrast	contrast
French (Dell 1995)	no voice contrast	no voice contrast	contrast	contrast	contrast
Shilha (Applegate 1958)	no voice contrast	contrast	contrast	contrast	contrast
Khasi (Nagaraja 1985)	contrast	(sequence missing)	contrast	contrast	contrast

cue quality, cue weighting

- quantity of cues matters
- but also the quality: e.g. C-V transition cues (onset cues) have primacy over V-C offset cues
- in V1O1O2V2 O2 determines the voicing of O1 (and not the reverse): regressive voicing assimilation (and not progressive)
- this correlates with the observation: the most common sites of voicing neutralization are ____# and ___O – where the onset cues are absent

scale of obstruent voicing perceptibility acc. to context

V_R ► V_# ► V_O ► {O_O, O_#, #_O}

indicates that voicing in one context is more perceptible than in the context listed to its right

from perception to constraints

- the perceptibility scale is fixed, and a ranked constraint system can be generated from it:
 - (i) *αvoice / [-son] __[-son], [-son] __#, #__[-son]
 μ
 (ii) *αvoice/ V_ [-son]
 - (iii) *avoice/ V_#
- (iv) *αvoice/V_[+son]
- e.g. (i) = 'no voicing in: between obstruents, after obstr. word-finally, word-initially before obstr.'

implicational hierarchy

- it is important to remember the scale is fixed
- e.g. no language is predicted where voicing is neutralized finally but not before obstruents – this would violate the fixed ranking, there would be a gap
- generally: no language is predicted in which voicing is licensed in a less informative context than the one where it is neutralized

Example: Lithuanian

 distinctive voicing preserved before sonorants: aukle 'governess' – auglinas 'fruitful' vikrus 'sent' – edrus 'glutton' silpnas 'weak' – skobnis 'table' smagus 'cheerful' – žmogus 'man'

- voicing is neutralized word-finally: daug [dauk] 'much'; kad [kat] 'that'
- voicing is neutralized before obstruents at-gal [adgal] 'back', dirb-ti [dirpti] 'work-inf' spalva 'colour'

Lithuanian: syllable or cues?

- 'voicing neutralization in the coda': daug, at-gal, dirb-ti
- but coda-based analysis fails
- ► syllabification of CC is **always** C.C, including obstr.+liquid clusters
- e.g. at.ne.se, irk.las, rakš.tis, cyp.lys, dump.les, dumb.las, kremb.lys, kremz.le
- there is no voicing neutralization in all codas!

Lithuanian: licensing by cue

- there is no justification for characterizing the site of licensing or neutralization in terms of syllabic position
- there are licensed onsets: smagus 'cheerful' žmogus 'man' but also neutralized onsets: spalva 'colour'
- there are neutralized codas: daug [dauk] 'much' but also licensed codas: auk.le 'governess'- aug.linas 'fruitful'
- Licensing by Cue: voicing in Lithuanian obstruents is neutralized in all and only the positions where the main cues are missing

Example: Hungarian

- distinctive voicing preserved before sonorants:
 tréfa 'joke' drukkol 'cheer'
 paplan 'duvet' ablak 'window'
- distinctive voicing preserved word-finally: hát 'back'- kád 'tub'; kalap 'hat' - rab 'prisoner'; mész 'whitewash' - méz 'honey'
- voicing is neutralized before obstruents kút-ban [db] 'in a well', kád-tól [tt] 'from a tub'

Hungarian: syllable or cues?

- 'voicing neutralization in the coda' fails in Hungarian because not all codas are neutralized
- word-final codas: hát kád
- word-medial codas: pap.lan ab.lak
- only pre-obstruent codas are neutralized:
 kút.ban [db] 'in a well', kád.tól [tt]

Hungarian: licensing by cue

- the cue-based approach gives a uniform analysis
- voicing in Hungarian obstruents is neutralized in all and only the positions where the main cues are missing: before obstruents
- the difference between Lith. & Hung.? where the language marks the point where contrast is allowed in the cue scale

Lithuanian vs. Hungarian

further voicing patterns predicted by Licensing by Cue

▶ V__R ▶ #__R

- Lac Simon (Quebec) and Totontepec Mixe (Mexico): neutralization word-finally, before/after obstruents but also word-initially; contrast: only between sonorants
- LS: loanword *banana* is [pa:na:n]
- TM: nasoya 'embroidered' wazoy 'shirt'; but only s initially, finally, before/after obstruents: suspa 'musician', tadapus 'he already cut it', mnahksup 'you're going'
- this pattern of neutralization is also impossible to characterize in syllabic terms: what neutralizes in LS or TM are all the codas plus a subset of the onsets!

further voicing patterns predicted by Licensing by Cue

word-initial neutralization can be straightforwardly analyzed by observing the difference between V___R and #___R contexts on the perceptibility scale, with #___R inferior to #___R